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Abstract

Background: Chromosome counting is a process in which cells determine somehow their intrinsic chromosome
number(s). The best-studied cellular mechanism that involves chromosome counting is ‘chromosome-kissing’ and
X-chromosome inactivation (XCl) mechanism. It is necessary for the well-known dosage compensation between the
genders in mammals to balance the number of active X-chromosomes (Xa) with regard to diploid set of
autosomes. At the onset of XCl, two X-chromosomes are coming in close proximity and pair physically by a
specific segment denominated X-pairing region (Xpr) that involves the SLC16A2 gene.

Results: An Ensembl BLAST search for human and mouse SLC16A2/SIc16a2 homologues revealed, that highly
similar sequences can be found at almost each chromosome in the corresponding genomes. Additionally, a
BLAST search for SLCT16A2/TSIX/XIST (genes responsible for XCl) reveled that "SLC16A2/TSIX/XIST like sequences”
cover equally all chromosomes, too. With respect to this we provide following hypotheses.

Hypotheses: If a single genomic region containing the SLC16A2 gene on X-chromosome is responsible for
maintaining “balanced” active copy numbers, it is possible that similar sequences or gene/s have the same
function on other chromosomes (autosomes). SLC16A2 like sequences on autosomes could encompass
evolutionary older, but functionally active key regions for chromosome counting in early embryogenesis. Also
SLCT6A2 like sequence on autosomes could be involved in inappropriate chromosomes pairing and, thereby
be involved in aneuploidy formation during embryogenesis and cancer development. Also, “SLCT6A2/TSIX/XIST
gene like sequence combinations” covering the whole genome, could be important for the determination of
X:autosome ratio in cells and chromosome counting.

Conclusions: SLC16A2 and/or SLCT16A2/TSIX/XIST like sequence dispersed across autosomes and X-chromosome(s)
could serve as bases for a counting mechanism to determine X:autosome ratio and could potentially be a mechanism
by which a cell also counts its autosomes. It could also be that such specific genomic regions have the same function
for each specific autosome. As errors during the obviously existing process of chromosome counting are one if not the
major origin of germline/somatic aneuploidy the here presented hypotheses should further elaborated and
experimentally tested.
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Background

X-chromosome inactivation (XCI) is a process by which
mammals, or better their cells, balance the number of
active X-chromosomes (Xa) with regard to a diploid set
of autosomes. Dosage compensation between genders in
mammals is achieved by keeping only one Xa per diploid
set of autosomes. Therefore the majority of genes on
one of the two X-chromosomes in female mammals is
silenced and denoted as inactive X-chromosome (Xi) or
Barr body [1]. What is known about molecular mechan-
ism of XCI was raised from the most popular mamma-
lian genetic research model Mus musculus (“laboratory
mice”) [2]. From the discovery of a single genomic locus
that is the starting point (“initial spot”) of XCI (later on
called X inactivation center — XIC), underlying mecha-
nisms were extensively studied [3, 4]. XIC is a small re-
gion on the X-chromosome that contains elements
being crucial for XCI process (Fig. 1). This process leads
in the end to an epigenetic modification of one of the X-
chromosomes, starting from XIC; this process was di-
vided into four stages: initiation, speeding, maintenance
and reactivation [5]. The initiation stage of XCI includes
as two most important steps counting and choosing.
‘Counting’ is in a way a process by which cells measure
the X:autosome ratio and ‘choosing’ is the process that
identifies which X-chromosome is to be inactivated. The
idea that counting mechanism exists was provided dur-
ing the early years of cytogenetics based on simple ob-
servations on cells with abnormal sex chromosome
numbers (gonosomal aneuploidy). In females, diploid
cells with more than two X-chromosomes inactivate all
but one of them, as in contrast cells with 45X- or
46,XY-karyotypes do not undergo XCI [6]. Although
molecular mechanisms were not known at that time, this
was already a proof by evidence that cells can count and
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exactly determine the number of their X-chromosomes.
An involvement of autosomes in X-chromosome could
be suggested after discovery of two Xa and two Xi in
tetraploid cells [7]. Although extensively studied, mo-
lecular mechanism/s that underlie counting and choos-
ing are still poorly understood. Most of the efforts for
finding a sequence being responsible for sensing and
counting were focused on a “small” region that encom-
passes the noncoding RNAs in XIC (Fig. 1). This search
has pointed out specific segments that were implied as
counting factor, namely RNA anti-sense to Xist [8]. At
the onset of random inactivation in one X-chromosome
in human early embryonic females cells, a transient co-
localization of homologous X-chromosomes XICs is re-
quired [9]. Further studies showed that before the onset
of XCI two homologous X-chromosomes are pairing
physically by a specific segment denominated X-pairing
region (Xpr) (Fig. 2). This Xpr could potentially play a
key role in counting mechanism at the onset of XCIL
Xpr is bringing together two XICs and pairing occurs
before XIST (X inactive specific (non-protein coding)
transcript, HGNC:12810) becomes up-regulated on both
X-chromosomes; lateron 7TSIX (TSIX transcript, XIST
antisense RNA, HGNC:12377) is down-regulated on the
future XCI [10, 11]. According to literature the first part
of the Xpr aligning involves the SLCI6A2 gene (solute
carrier family 16, member 2 (thyroid hormone trans-
porter), HGNC:10923) (Fig. 2) [10]. This association is
not disrupted even if a XIST heterozygote deletion was
present in embryonic stem cells, a finding which means
that first steps of XCI (counting and choosing) are inde-
pendent of XIST/TSIX/Xite region [10]. Besides, murine
Xite region contains X-inactivation intergenic transcrip-
tion elements that were shown to regulate the probabil-
ity of choice [12].
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Fig. 1 The two mayor players of X-chromosome inactivation. The localization of X-inactivation center (XIC) on human and murine X- chromosome
ideogram is highlighted in red on the depiction of the corresponding entire X-chromosomes. The highlighted XIC-containing region of human
(Xq13.2) and murine X-chromosome (XgD) is enlarged and depicted below the corresponding ideograms. XIST/Xist region is again highlighted for this
magpnification in red and shown together with other transcripts of this region. XIST/Xist encodes a nontranslated nuclear RNA which spreads along the
X-chromosome and initiates silencing. TSIX/Tsix (highlighted in green) creates an antisense RNA spanning all of XIST/Xist region enabling prevention of
XIST/Xist RNA spreading on future Xa (active X-chromosome)
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Fig. 2 The X-Pairing Region (Xpr). Here are summarized data from Augui et al. [10], who used bacterial artificial chromosome (BAC) probes to
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Given all above mentioned findings it can be assumed
to be true that X-chromosome pairing and counting are
crucial steps for onset of XCI. However, chromosome
counting is not only essential for X-chromosomes. Re-
cent studies showed that during early embryogenesis the
fetal tissue has features of high chromosomal instability
[13—15]. Nonetheless, trisomies and monosomies can be
later fixed by these cells [14, 16], indicating for the exist-
ence of a counting mechanism for all chromosomes. As
gonosomes have autosomal origin, such an autosomal
counting mechanism must be the even evolutionary
older one. If a single genomic region containing the
SLC16A2 gene can be responsible for sensing and count-
ing of X-chromosomes, we asked ourselves if it there
could be SLC16A2-like genes/sequences (Fig. 2) on other
chromosomes, potentially doing the same job for those
autosomes. Furthermore, interactome analysis of
SLCI6A2 (evaluation of proteomic interactions of
SLC16A2 using NCBI gene (http://www.ncbi.nlm.nih
.gov/gene/6567) and STRING-DB (http://string-db.org)
demonstrates the involvement of SLCI16A2 interactome
in a variety of processes (i.e. transcriptional regulation),
which could be indirectly related to aneuploidy and local
epigenetic dysregulations. Closer inside in SLCI6A2/
Slc16a2 in human and mouse revealed that the human
gene contains several “big” LINE elements (long inter-
spersed nuclear elements) (Fig. 3). Accordingly, LINE el-
ements are known to be involved in genome
destabilization, which generally result in aneuploidiza-
tion [17]. An Ensembl BLAST search for human and
mouse revealed that similar sequences to SLCI6A2/
Slc16a2 can be found at different spots in the corre-
sponding genomes (Fig. 4); N.B.: in human we excluded

the biggest LINE element from our Ensembl BLAST
search. Comparing SLCI6A2/TSIX/XIST like sequences
(BLAST search) throughout the human genome, hom-
ologous regions of them cover all chromosomes equally
(Additional files 1 and 2: Figures S1-S2).

Hypotheses

Taking into account all these findings based on literature
and database search, we developed the following
hypotheses:

— SLCI6A2 like sequences on autosomes could be
and/or encompass the evolutionary older, but
functionally active key regions for chromosome
counting in early embryogenesis.

— If a single genomic region containing the
SLC16A2 gene is responsible for maintaining
“balanced” copy numbers of only one Xa, it is
possible that similar sequences or gene/s have the
same function for other chromosomes
(autosomes); the similarity or homology of these
sequences in the genome could be involved in
inappropriate chromosomes pairing [18, 19].

— As SLCI16A2-like sequence could be involved in
inappropriate chromosomes pairing, too, they
could provide to formation of chromosomal
aneuploidies during embryogenesis and cancer
development [20, 21].

— “SLC16A2/TSIX/XIST like sequence combinations”
are covering the whole human and murine genome,
making it plausible that this combination is
important for determination of X:autosome ratio in
cells and for chromosome counting.
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Fig. 3 Slc16a2 gene in humans and mouse. SLC16A2/Slc16a2 gene region is depicted. Note the different transcription directions in mouse and
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Fig. 4 Mapping of the Slc76a2 gene. Results of Ensebml BLAST search for SLC16A2/SIc16a2 gene sequences in human and mouse. Only 100 hits
are presented (including original genomic localization of SLC16A2/SIc16a2 gene). Human SLCT16A2 gene is 40,494 bp long and the size of the
regions mapped as homologous goes from 1,161 to 362 bp. These homologous regions map within 43 different genes on 15 chromosomes and
to 56 genomic regions on 14 chromosomes. Murine Slc16a2 is 40,240 bp long and the size of the homologous regions spanned 633 to 532 bp,
30 genes on 14 chromosomes and 70 genomic locations on 19 chromosomes. In human chromosomes 20, 21 and Y did not show any SLCT6A2
homologous sequences
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Discussion and conclusion

Early studies on XCI have been conducted without
complete knowledge of human genomic sequences, and
as elaborated before, all efforts for finding the “counting
region” was focused on a small part of the XIC region.
Mechanisms of XCI were extensively studied as early as
in 1990. Riggs [20] put forward the idea that along the
X-chromosome there are “way station” or “boosters” ele-
ments that are facilitating inactivation speeding on the
X-chromosome [20]. Furthermore, studies on X:auto-
some translocation and Xist yeast artificial chromosome
(YAC) transgenes of the autosome showed that inactiva-
tion can spread and silence autosomal genes, too [21, 22];
this was also shown in clinical cases [23]. The inactivation
is not as efficiently as inactivation of genes on X-
chromosome and it can vary from autosome to autosome.
Thus, it was evident that sequence(s) involved in spread-
ing of inactivation is/are not specific to X-chromosomal
sequences. Further studies on individual autosomal triso-
mic female cases showed that XCI is not altered (one Xi
and one Xa), while two Xa featured the majority of triploid
female embryos [24, 25]. During early years of genetics it
was generally assumed that a core of Xi or Barr body was
made up from silenced X-chromosomal genes, but 2D
and 3D architecture studies revealed higher-level
organization of Xi. In general most of the genes (regard-
less of activity and position on the metaphase chromo-
some) are arranged in the periphery of the Xi, and most of
the noncoding and repetitive sequence reside within the
interior of Xi [26].

In summary, facts about X-chromosome counting
and XCI are: (i) there is one Xa per diploid set of au-
tosomes in mammalian cells; (ii) before XCI, early in
embryogenesis, cells are capable to count chromo-
somes and to determinate the X:autosome ratio; (iii)
on the onset of embryogenesis two (or more) X-
chromosomes come in close proximity; (iv) there is a
higher-level organization of the Xi (in general non-
coding and repetitive sequences inside, while genes
are positioned outside). Regarding (iii) and (iv), two
opposite “phenomena” were discovered: chromosome
territories and chromosome kissing. First one de-
scribes how in a nucleus chromosomes are occupying
distinct and well-defined territories [27, 28]. The
“phenomenon” of two chromosomes coming close to-
gether or “chromosome kissing” referrers to inter-
chromosomal interactions between pairs of chromo-
somes or specific parts of them [19].

Chromosome and gene positioning in the nucleus is
clearly important for numerous functions. Among
others, chromosome counting could be one of the cellu-
lar processes that requires specific nucleus architecture
in a sense that X-chromosome/s is/are in contact with
autosomes.
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Sequence similarity across autosomes and X-
chromosome(s) could serve as counting mechanism to
determine X:autosome ratio, and it could be that some
specific genomic regions have the same function for
each autosome, too. Consequently, errors during
chromosome counting could be the first step in forma-
tion of chromosomal aneuploidies during embryogenesis
and cancer development. SLCI16A2/TSIX/XIST gene like
sequence combinations cover the whole genome; thus it
may be speculated that they could serve as such check
points. Sequence similarities across autosomes and X-
chromosome(s) could be prerequisite for pairing and
counting mechanisms.

Interestingly, when comparing human and murine X-
chromosomes and SLCI6A2/Slc16a2 genes localized
there, one finds that they have different transcription di-
rections (Fig. 4). If this is meaningful in any way has to
be ruled out be further studies. However, it once again
raises additional questions about the suitability of mouse
as a model for human.

Overall, supportive facts for the here presented hypoth-
esis are that chromosome kissing/counting is important
for (i) regulation of gene expression (silencing and activa-
tion); (ii) tissue specific transcription; (iii) cell fate and (iv)
DNA replication control [19, 29-32]. However, the onset
of XClI is most likely not the only example of chromosome
kissing. Accordingly, it seems to be necessary to carry out
a more generalized search for sequences driving inter-
chromosomal interactions. SLCI6A2/TSIX/XIST gene like
sequence may have to be more in focus of research here.

Additional files

Additional file 1: Figure S1. SLCT6A2/TSIX/XIST like sequences through
human genome (chromosomes 1-12). BLAST search result for SLC16A2/TSIX/
XIST sequence through human genome showed, that homologous regions
of these three genes cover all chromosomes equally. (TIF 2653 kb)

Additional file 2: Figure S2. SLC16A2/TSIX/XIST like sequences through

human genome (chromosomes 13-22, X and Y). See figure legend for
Additional files 1 and 2: Figures S1-S2. (TIF 3023 kb)
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