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Abstract

Background: Somatic chromosomal mosaicism is the presence of cell populations differing with respect to
the chromosome complements (e.g. normal and abnormal) in an individual. Chromosomal mosaicism is
associated with a wide spectrum of disease conditions and aging. Studying somatic genome variations has
indicated that amounts of chromosomally abnormal cells are likely to be unstable. As a result, dynamic
changes of mosaicism rates occur through ontogeny. Additionally, a correlation between disease severity
and mosaicism rates appears to exist. High mosaicism rates are usually associated with severe disease
phenotypes, whereas low-level mosaicism is generally observed in milder disease phenotypes or in
presumably unaffected individuals. Here, we hypothesize that dynamic nature of somatic chromosomal
mosaicism may result from genetic-environmental interactions creating therapeutic opportunities in the
associated diseases and aging.

Conclusion: Genetic-environmental interactions seem to contribute to the dynamic nature of somatic
mosaicism. Accordingly, an external influence on cellular populations may shift the ratio of karyotypically
normal and abnormal cells in favor of an increase in the amount of cells without chromosome
rearrangements. Taking into account the role of somatic chromosomal mosaicism in health and disease, we
have hypothesized that artificial changing of somatic mosaicism rates may be beneficial in individuals
suffering from the associated diseases and/or behavioral or reproductive problems. In addition, such
therapeutic procedures might be useful for anti-aging strategies (i.e. possible rejuvenation through a
decrease in levels of chromosomal mosaicism) increasing the lifespan. Finally, the hypothesis appears to be
applicable to any type of somatic mosacism.
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Πάντα χωρε κα ο ν μένει
(Everything flows and nothing stays)
Heraclitus of Ephesus

Somatic chromosomal mosaicism is the presence of
chromosomally distinct cellular populations in an in-
dividual. This type of intercellular genomic variations
is commonly associated with a wide spectrum of gen-
etic diseases ranging from chromosomal syndromes to
complex disorders. Furthermore, somatic chromo-
somal mosaicism is a risk factor for cancer and repro-
ductive problems [1–7]. Increases and decreases in
numbers of cells with abnormal karyoptypes are sys-
tematically observed in humans through ontogeny (i.e.
from zygote to death). The dynamic fluctuations in
mosaicism rates have been suggested to be a mechan-
ism for intrauterine control of cell numbers and for
aging [8–11]. It is noteworthy that mosaicism rates
may change due to genetic-environmental interactions
[12, 13]. Alternatively, mosaic individuals may demon-
strate a reversion to normal of inherited mutations
[14, 15]. Moreover, a number of techniques for artifi-
cial changing of mosaicism levels appear to exist (e.g.
CRISPR/Cas9-mediated genome editing) [16]. Add-
itionally, there is a line of evidences for a kind of
self-correction of chromosome abnormalities (decrease
of mosaicism rates) in early mammalian development
[17–19]. Taking into account these features of som-
atic mosaicism, we have hypothesized that dynamic
changes in rates of chromosomal mosaicism mediated
by genetic-environmental interactions are able to de-
liver therapeutic opportunities in disease and aging.
Almost all types of chromosomal abnormalities (aneu-

ploidy/polyploidy, structural rearrangements, super-
numerary marker chromosomes) are able to be mosaic
[7, 20–23]. Despite the formation mechanisms (i.e. zyg-
otic or self-correction of chromosomal abnormalities
versus post-zygotic or somatic mutagenesis), mosaic
chromosomal abnormalities are generally associated with
reduced phenotypic penetrance and decreased stability
of cellular genomes as compared to regular/non-mosaic
ones [3, 7, 10–13, 24, 25]. Somatic chromosomal mosai-
cism is common in clinical cohorts of patients with neu-
rodevelopmental disabilities and/or congenital anomalies
[7, 25–27]. Because of ontogenetic (“ontogenomic”) vari-
ations, mosaic genome variations causing a wide
spectrum of disorders require specific approaches to the
diagnosis and management including molecular cytogen-
etic monitoring of ontogenetic changes in mosaicism
rates [28]. Actually, a large amount of data acquired
through cytogenetic analyses of mosaicism over the last
50 years has indicated less severe phenotypes of chromo-
somal disorders to be associated with mosaicism, the
rates of which are likely to change ontogenetically.

In early ontogeny, somatic variations of the human
genome seem to achieve unprecedently high rates (i.e.
the amount of chromosomally abnormal cells achieves
the “ontogenetic” maximum). The latter stages are asso-
ciated with a decrease in chromosomal instability (mo-
saicism) rates, which still remain high [9, 10, 29, 30]. In
parallel, chromosomal mosaicism/instability confines to
either extraembryonic or embryonic tissues (i.e. chromo-
somal mosaicism confined to placenta or fetal brain, re-
spectively) [31–34]. The consequences of these
intercellular genomic variations may be devastative at
later developmental stages [35, 36]. For instance, high
rates of chromosomal mosaicism are associated with ~
1/4 of spontaneous abortions in the first trimester [37–
39]. On the other hand, lower rates of chromosomal mo-
saicism and instability are able to contribute to postnatal
morbidity being causative per se or being an element of
pathogenic cascades in complex diseases [3, 7, 40]. In
the latter scenario (i.e. mosaicism is an element of a
pathogenic cascade), chromosomal mosaicism and in-
stability are more likely to result from altered pro-
grammed cell death and/or failed cellular selection/
clearance through gestation [9, 10, 33–35]. These alter-
ations seem to be common mechanisms for complex
diseases mediated by genetic (chromosomal/genomic)
instabilities.
There is a strong evidence that somatic chromosomal

mosaicism and instability contributes to the pathogen-
esis of brain diseases [21, 41–45]. Chromosomal mosai-
cism has been systematically observed in autistic
individuals [5, 7, 46, 47]. In schizophrenia, the diseased
brain exhibits tissue-specific mosaicism manifested as
aneuploidy and specific copy number variations [48–52].
Neurodegeneration has been found to be mediated by
somatic aneuploidy and chromosomal instability con-
fined to degenerating brain areas [44, 53–55]. More pre-
cisely, Alzheimer’s disease has been associated with
brain-specific genomic/chromosomal instability (e.g. an-
euploidy), which is integrated into the pathogenetic cas-
cade of this devastating disease [56–62]. In addition,
molecular (neuro)cytogenetic analyses of this late onset
neurodegenerative disease have demonstrated that
pathological aging is likely to be mediated by mosaic an-
euploidy and chromosome instability in humans [63–
65]. For more details, see reviews: [12, 21, 41–43, 45,
66]. Behavioral variability and post-traumatic stress dis-
orders are likely to be mediated by genomic/chromo-
somal instability and somatic mosaicism, as well [67, 68].
Here, it is important to note that changes of cell propor-
tions are hypothesized to determine the dynamics of be-
havioral variability (i.e. an increase of abnormal cell
numbers may lead to more severe behavioral problems,
whereas a decrease of abnormal cell numbers is likely to
diminish the severity of behavioral problems) [68].
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Finally, reproductive problems have long been associated
with chromosomal mosaicism, affecting either fetuses or
individuals experiencing reproductive failure [4, 9, 20,
22, 35–39]. In total, studying brain diseases in the con-
text of somatic mosaicism suggests that intercellular
genetic heterogeneity (chromosomal heterogeneity) is a
mechanism for central nervous system dysfunction and
the dynamic nature determines the phenotypic outcome.
Additionally, empirical and theoretical observations
show that a correlation between changes in mosaicism
levels and phenotypic manifestations does exist.
Another picturesque example of somatic mosai-

cism’s impact on human homeostasis is aging. Dy-
namic changes of mosaicism rates produced by the
accumulation of somatic mutations (i.e. aneuploidy)
seem to be an important cytogenetic mechanism for
human aging [69–71]. Cytogenetic and cytogenomic
studies of normal and pathological aging consistently
demonstrate an increase in rates of chromosomal mo-
saicism and instability in relation to age [10, 55, 63,
64, 70]. Since 60s, the latest ontogenetic stages have
been associated with higher rates of chromosomal
mosaicism and instability [7, 8, 11]. Thus, these data
allow to hypothesize that external inhibition of age-
dependent chromosome instability and a decrease of
somatic chromosomal mosaicism rates might be an
opportunity for anti-aging therapeutic interventions
[10, 70]. Furthermore, somatic cancer-associated mu-
tations commonly occur in aged human tissues of
presumably healthy individuals [72]. It is not surpris-
ing inasmuch as chromosomal mosaicism and in-
stabilities are risk factors for cancers [73, 74]. In
general, aging-related diseases are commonly medi-
ated by chromosomal instability and/or mosaic aneu-
ploidy [7, 41, 44, 45, 55, 75–77]. The results of
molecular genetic studies of aging correlate with ob-
servations on mutation load contribution to limiting/
shortening the lifespan [78, 79]. Additionally, there
are evidences that inhibiting chromosome instability
might underlie successful anti-aging strategies [80].
Thus, genetic instability at chromosomal level in-
volved in human aging and/or lifespan shortening is
an intriguing target for lifespan-extension and anti-
aging interventions.
Genetic-environmental interactions play an import-

ant role in generating chromosome instability and,
probably, somatic chromosomal mosaicism [12, 13,
44]. It is highly likely that environmental triggers are
able to stimulate or to inhibit genome/chromosome
instability [7, 12, 13]. Here, it is to mention that a
cellular genome may demonstrate a kind of a self-
correction resulting in a corrected/normal genomes in
daughter cells [14, 15, 17, 18]. Consequently, one can
suggest the cellular genome has high self-correctional

potential. Alternatively, somatic mosaicism is able to
be a stress response or cellular adaptation to adverse
environmental effects [13, 40]. Moreover, actual tech-
nologies of in vivo correction of cellular genomes
have the intrinsic potential for becoming more safe
and efficient in forthcoming future [16, 80]. There-
fore, either special genome editing technologies (e.g.
CRISPR/Cas9-mediated methods) or stimulated
genetic-environmental interactions (i.e. medication,
life style, diet, (anti-)stress etc.) are able to decrease
levels of chromosomal mosaicism/instability. Accord-
ing to our hypothesis, these opportunities might be
used for decreasing the risks for complex diseases/
conditions, improving the dynamics of genetic dis-
eases caused by mosaicism, increasing the lifespan,
and rejuvenating. Disease progression in cancers and
neurodegenerative diseases is able to be slowed down
by therapeutic interventions decreasing the levels of
chromosomal mosaicism/instability. Similarly, such in-
terventions could decrease the risk for complex dis-
eases, cancer, reproductive and behavioral problems.
Figure 1 illustrates schematically the outcome of such
interventions.
In the postgenomic era, cytogenomic/cytogenetic ana-

lysis is required to uncover complemented molecular
and cellular pathways to a disease and therapeutic inter-
ventions. Chromosome-oriented postgenomic studies
are able to provide new understanding how genomic
variations produce the phenotype at saupramolecular or
nuclear level and what can be done to diminish the ef-
fect of causative mutations. The latter may be achieved
by either correcting the pathways altered by chromo-
some abnormalities/instability or decreasing the number
of cells carrying the mutations [81–84]. Since cancers
are one of the most intriguing models for somatic muta-
genesis, a number of the theoretical and empirical
(oncocytogenetic) observations may contribute to our
hypothesis. Taking into account that both clonal and
nonclonal chromosomal aberrations (mosaic chromo-
some aberrations) are involved in cancers, changes in
mosaicism rates for decreasing cancer risks (as suggested
in Fig. 1.3) might be complicated [84, 85]. Depending on
cancer phase, specific strategies for decreasing mosa-
cism rates are to be developed. Furthermore, mosaicism
has recently been suggested to be beneficial in some
cancer cell populations (“trade-off” of cellular adapta-
tion) [86]. In this instance, there is a need to develop ap-
proaches to differ between “beneficial” and “non-
beneficial” mosaicism in cancers. In general, it is to con-
clude that therapeutic strategies to manage mosaicism
rates should be personalized.
The results of studying the dynamic nature of som-

atic mosaicism and genetic-environmental interactions
are relevant to a wide spectrum of biomedical fields
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(Fig. 1). The development of efficient procedures pro-
viding the decrease in levels of somatic genetic in-
stability (chromosomal mosaicism/instability) would
certainly be a breakthrough in modern biomedical sci-
ence. To this end, it appears that our hypothesis is
applicable to all the types of somatic mosaicism.
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