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CASE REPORT

Non-classical 1p36 deletion in a patient 
with Duane retraction syndrome: case report 
and literature review
Emiy Yokoyama1, Camilo E. Villarroel1, Sinhué Diaz2, Victoria Del Castillo1, Patricia Pérez‑Vera3, Consuelo Salas3, 
Samuel Gómez4, Reneé Barreda1, Bertha Molina5 and Sara Frias5,6* 

Abstract 

Background: Monosomy of 1p36 is considered the most common terminal microdeletion syndrome. It is character‑
ized by intellectual disability, growth retardation, seizures, congenital anomalies, and distinctive facial features that are 
absent when the deletion is proximal, beyond the 1p36.32 region. In patients with proximal deletions, little is known 
about the associated phenotype, since only a few cases have been reported in the literature. Ocular manifestations in 
patients with classical 1p36 monosomy are frequent and include strabismus, myopia, hypermetropia, and nystagmus. 
However, as of today only one patient with 1p36 deletion and Duane retraction syndrome (DRS) has been reported.

Case presentation: We describe a patient with intellectual disability, facial dysmorphism, and bilateral Duane retrac‑
tion syndrome (DRS) type 1. Array CGH showed a 7.2 Mb de novo deletion from 1p36.31 to 1p36.21.

Discussion: Our patient displayed DRS, which is not part of the classical phenotype and is not a common clinical 
feature in 1p36 deletion syndrome; we hypothesized that this could be associated with the overlapping deletion 
between the distal and proximal 1p36 regions. DRS is one of the Congenital Cranial Dysinnervation Disorders, and a 
genetic basis for the syndrome has been extensively reported. The HES3 gene is located at 1p36.31 and could be asso‑
ciated with oculomotor alterations, including DRS, since this gene is involved in the development of the 3rd cranial 
nerve and the 6th cranial nerve’s nucleus. We propose that oculomotor anomalies, including DRS, could be related to 
proximal 1p36 deletion, warranting a detailed ophthalmologic evaluation of these patients.
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Background
1p36 monosomy is the most common terminal micro-
deletion syndrome, with an incidence of 1 in every 
5000 to 10,000 newborns and is found in more than 
1.2% of patients with idiopathic intellectual disability 
[1]. Although the diagnosis may be suspected clinically, 
it is often confirmed after the application of molecular 

cytogenetic tests. Most cases are de novo with a micro-
deletion size of approximately 5  Mb, ranging from 1.5 
to 10.5 Mb [2, 3]. The classical phenotype is associated 
with distal deletion of the most terminal chromosomal 
band (1p36.3) and includes intellectual disability, growth 
retardation, microcephaly, a distinctive craniofacial dys-
morphism, and other variable congenital malforma-
tions. Larger deletions extending up to 1p36.31 show a 
severe neurological phenotype including profound dis-
ability, epilepsy, and deafness [3]. By comparison, proxi-
mal deletions beyond 1p36.23 (usually interstitial) show 
non-classical features including severe intellectual dis-
ability, hirsutism, abnormal ears, coarse facies, congenital 
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heart disease, and variable cardiomyopathy [4, 5]. These 
proximal deletions are more infrequent than the distal 
deletions, so knowledge about their associated pheno-
type (sometimes referred as “proximal 1p36 deletion 
syndrome”) is limited [4]. The common ocular manifes-
tations or functional visual problems described in both 
distal and proximal deletions are strabismus (30–35%), 
myopia (17%), hypermetropia (67%), and nystagmus 
(13%) [1, 2]. The presence of Duane retraction syndrome 
(DRS) has only been reported on one occasion, by Neal 
in 2006 [6].

DRS is a congenital eye movement disorder character-
ized by the variable limitation of abduction and globe 
retraction with narrowing of the palpebral fissure on 
abduction [7]. Although most cases are sporadic, some-
times this disorder is part of a recognizable genetic entity, 
whether as a main feature or as a rare associated finding 
[7]. DRS has also been associated with several cytoge-
netic anomalies, such as deletions on chromosomes 4 
and 8 or the presence of an extra marker chromosome 
derived from chromosome 22 [8]. Here, we describe a 
patient with a 1p36.21p36.31 deletion with a non-classi-
cal phenotype by reason of the uncommon DRS type 1 
clinical feature. We also analyze the genes that might be 
implicated in the phenotype, and we propose that ocu-
lomotor anomalies including DRS, could be related to 
proximal 1p36 deletion.

Case presentation
The patient is a 13 years-old boy, the first child of healthy 
and non-consanguineous parents. He was born after an 
uneventful pregnancy; his birth weight was 3075 g (> 10th 
percentile), and his length was 52  cm (75th percentile). 
At 6 months of age, the patient showed significant devel-
opmental delay and hypotonia. He was evaluated by the 
Genetics Department when he was 2  years old and he 
was able to speak, follow simple orders, identify colors, 
and count from 1 to 5; at 5 years old he had bladder and 
bowel control, however, he continued to display devel-
opmental delay, and currently goes to a special school, 
only speaks 10 words, and only counts to 10. On physi-
cal examination, he showed weight, height, and cranial 
circumference below the 3rd percentile; coarse facies; 
narrow forehead; telecanthus; epicanthus; convergent 
strabismus; synophrys; hirsutism; a broad nasal bridge; 
large ears; teletelia; diastasis recti; retractile testes; and 
hands with brachydactyly and aberrant palmar creases 
(Fig.  1a–d). His ophthalmologic exam found limitations 
to abduction (right eye − 4; left eye − 3) with palpebral 
retraction and shots, as well as hypermetropia of the right 
eye, concluding the diagnosis of bilateral DRS type 1. The 
prognosis of the patient is favorable, even until today he 
has had good evolution. His condition has not required 

any type of surgical intervention or specific treatment 
and consequently, he has not presented adverse events, 
anticipated events, or therapeutic changes.

G-banded karyotype, echocardiogram, and cer-
ebral computed axial tomography scans did not reveal 
any alteration; aCGH showed an interstitial deletion 
of 7.2  Mb with breakpoints at bands 1p36.31p36.21 
(5,414,227–12,632,782; Fig. 1e). We confirmed this result 
using FISH analysis (Fig. 1f ). The patient’s karyotype was 
46,XY.ish del(1)(p36.31p36.21)(RPL22-).arr[GRCh37/
hg19] 1p36.31p36.21(5414227_12632782)x1 dn. (ISCN 
2016) [9]. The deletion encompassed more than 80 genes 
(USCS genome browser, GRCh37/hg19; Fig. 2). Both par-
ents had normal karyotype, aCGH, and FISH analyses 
(Data not shown).

Discussion
Although 1p36 deletion syndrome is clinically recog-
nizable, there is significant phenotypic variation among 
affected individuals [10, 11]. This variation could be 
due to its genetic heterogeneity, which includes termi-
nal and interstitial deletions of different lengths located 
throughout the 1p36 region; Wu et al. [12] proposed that 
most genes contributing to the phenotypic features of 
1p36 deletion syndrome were located distal to marker 
D1S2870 in 1p36.31 (chr1: 6,289,764–6,289,973), and 
subsequently this region was referred as the distal or clas-
sical region. Later, a further detailed analysis of this distal 
region was published by Shimada et al., defining a narrow 
critical region located at 1.8 to 2.2  Mb for the classical 
phenotype, and another region at 5.4 to 6.2  Mb associ-
ated with a more severe intellectual disability [13]. On 
the other hand, Kang et al. [5] identified interstitial dele-
tions affecting 1p36.23–1p36.11 in five individuals using 
aCGH, concluding that the features seen in these chil-
dren might constitute a distinct proximal 1p36 deletion 
syndrome located at 1p36.2 (chr1: 8,395,179–11,362,893; 
Fig.  2). Our patient’s deletion overlaps distal and proxi-
mal regions, but not the narrow critical region for the 
classical phenotype (Fig. 2).

Clinically, our patient shared the developmental delay, 
generalized hypotonia, and cryptorchidism with the clas-
sical phenotype, but did not share the typical facial dys-
morphism; he also shared the coarse facies, hirsutism, 
and the marked intellectual disability with the proximal 
phenotype. In addition, he displayed DRS, a congenital 
eye movement disorder characterized by a limited hori-
zontal gaze and retraction of the globe into the orbit on 
attempted abduction, resulting in secondary narrowing 
of the palpebral fissure [14–16].

In 1974, Huber described three types of DRS. Type 1 is 
characterized by the marked limitation of abduction with 
normal or minimally defective adduction, while type 2 



Page 3 of 7Yokoyama et al. Mol Cytogenet           (2020) 13:42  

has normal or minimally defective abduction but marked 
limitation of adduction, and type 3 is characterized by 
the marked limitation of both abduction and adduction 
[7, 8, 17, 18]. In 2005, Kim and Hwang analyzed whether 
the presence of the abducens nerve changed depending 
upon the type of DRS, and found that the abducens nerve 
on the affected side was absent in all patients with type 1 
DRS and in some type 3 DRS, but present in all patients 
with DRS type 2 [19].

Isolated DRS is usually sporadic, and less than 10% of 
cases show a familial pattern with autosomal dominant 
inheritance [7, 8, 16]. Some families with incomplete 
penetrance (the disease skips a generation) and variable 
expressivity (ranges in severity) have been documented 
[8]. DRS has a prevalence of about 1/1,000 in the general 
population, with no particular race or ethnic group show-
ing a predisposition but shows up to 60% predominance 
among females [7, 8]. Prior reviews of DRS reported that 
this condition represents a 1–4% proportion of all stra-
bismus cases, and that it is mostly unilateral and left-
sided [8]. Electromyographic and MRI studies of patients 

with isolated DRS, revealed the absence of the abducens 
nerve and nuclei (6th cranial nerve) from the brainstem, 
and lateral rectus muscles partially innervated by the 
branches from the oculomotor nerves (3th cranial nerve) 
[8, 15, 20]. In accordance, it is currently accepted that 
DRS derives from developmental errors in the innerva-
tion of the ocular and facial muscles and it is included as 
one of the Congenital Cranial Dysinnervation Disorders 
[21–23].

Association between 1p36 microdeletion and DRS
Large series, such as those of Battaglia et al. [1] or Sha-
pira et  al. [10], have reported ocular manifestations in 
52–75% of patients with 1p36 microdeletion, including 
strabismus in 30–35% [1, 2], but none of them mentioned 
DRS; in fact, none of the genes responsible for the clinical 
manifestations of classical 1p36 microdeletion have been 
associated with DRS (Table 1) [13, 24, 25].

Neal et al. reported a patient with 1p36 microdeletion 
and periventricular nodular heterotopia who also dis-
played DRS [6]. The patient had a terminal deletion of 

Fig. 1 a–d Patient with coarse facies, narrow forehead, telecanthus, epicanthus, convergent strabismus, synophrys, hirsutism, broad nasal bridge, 
large ears, brachydactyly, and aberrant palmar creases; e aCGH showing an interstitial deletion of 7.2 Mb with breakpoints in bands 1p36.31p36.21: 
arr[GRCh37/hg19] 1p36.31p36.21(5414227_12632782)x1 dn; f DAPI counterstain FISH for the 1p36 region on metaphase chromosomes: locus 
specific probe for 1p36 marked with red fluorochrome (SureFISH, Agilent technologies, Santa Clara, USA) (one red arrow) and alpha satellite probe 
for chromosome 1 (chr1 CEP probe) marked with green fluorochrome (SureFISH, Agilent technologies, Santa Clara, USA) (one green arrow); deleted 
chromosome 1 with only one green fluorescent signal (one green arrow) and missing the red signal (two red arrows). Analysis was performed using 
an AXIO ImagerMI (Zeiss, Germany) microscope, and the images were obtained and analyzed using ISIS software (Meta Systems, Germany)
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9.6 Mb, sharing with our patient the 1p36.22 region; the 
authors did not propose any candidate gene for DRS. In a 
detailed review of all the genes located in the overlapped 
region of Neal’s patient and our patient (Fig. 2), we found 
that the HES3 gene could correlate with the pathophysi-
ology of DRS, since this gene has been associated with the 
morphogenesis of the midbrain-hindbrain boundary and 
anterior hindbrain, and the development of the oculomo-
tor nerve (3rd cranial nerve) [26–30].
HES family genes are the mammalian homologues 

of the Hairy and Enhancer Split genes in Drosophila, 
required for normal neurogenesis; they encode basic 
helix–loop–helix (HLH) transcriptional repressors [28–
30]. In human, there are seven members in the HES fam-
ily, HES1–7, which regulate developmental pathways in 
several tissues, including brain morphogenesis [29]. The 
developing nervous system is divided into many com-
partments by boundary structures; several knockout 
mice studies demonstrated that Hes genes are crucial to 
maintaining these boundary structures in the develop-
ing brain [27, 28]. The embryonic hindbrain is divisible 
into eight rhombomeres (Rh) [31], the abducens motor 
nucleus is included in Rh6 which is visible at stage 16 of 
human embryo development (before 6-week), when all 
the neuromeres have appeared [32, 33]. In this way, the 
haploinsufficiency of the HES3 gene could be related 
to the altered ocular mobility, specifically DRS in our 
patient, by affecting the nerves and nuclei of both the 
3rd cranial nerve derived from the midbrain close to the 

hindbrain junction and the 6th cranial nerve derived par-
tially from Rh6.

We looked for other previously reported patients who 
had 1p36 deletions that included the HES3 gene and 
compared them with our patient (Table  2). In addition 
to Neal’s patient [6], Shimada et al. analyzed 50 patients 
with different levels of 1p36 deletion, 18 of which pre-
sented loss of the HES3-containing region (Fig.  2), yet 
only one (patient 46) was reported to have an oculomotor 
disturbance; however, among the 17 remaining patients, 
four had strabismus [24]. It could be possible that some 
of the cases reported as strabismus may in fact be DRS, 
although the globe retraction and the narrowing of the 
eyelid fissure are visible data on physical examination, 
but if the extraocular motility test was not performed, 
DRS might not have been detected. Even so, only a part 
of the patients with HES3 deletion present eye disorders; 
the absence of DRS in these patients may be related with 
incomplete penetrance and variable expressivity, already 
observed in the familial type of DRS [34–36]. It is then 
necessary to study other patients with del(1p36) with 
haploinsufficiency of HES3, to explore its role in the pres-
ence of DRS type 1.

Furthermore, non-syndromic DRS can be due 
to mutations in genes other than HES3, DRS1 
in 8q13—OMIM#126800; DRS2 (CHN1 gene in 
2q31.1)—OMIM#118423; DRS3 (MAFB gene in 20q12)—
OMIM#608968, which have an autosomal dominant 
inheritance. Although no other cases of DRS were found 

Fig. 2 The USCS genome browser (GRCh37/hg19) showed more than 80 genes involved in the deleted region in our patient (green rectangle) 
which overlaps with both the proximal region (red rectangle) and the distal region (blue rectangle). Also, we showed that the HES3 gene (red star) is 
included in both our patient’s deleted region (green rectangle) and Neal’s deleted region (yellow rectangle)
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in the parents or other relatives of the present index case, 
and that does not support an additional mutation out-
side of 1p36, not having intentionally searched for these 
mutations is a limitation of the present study.

In conclusion, we propose that in non-classic 1p36 
deletion syndrome, the HES3 gene could be associated 
with oculomotor alterations, including DRS. However, 
further studies and more patients that include a com-
plete clinical history and physical examination, as well as 
molecular description, are needed to confirm this find-
ing. Finally, because DRS could be mistaken for common 
strabismus if it is not intentionally sought, we recom-
mend a detailed ophthalmologic evaluation in all patients 
with 1p36 deletion.
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