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Abstract 

Background  X/Y translocations are highly heterogeneity in terms of clinical genetic effects, and most patients lack 
complete pedigree analysis for clinical and genetic characterization.

Results  This study comprehensively analyzed the clinical and genetic characteristics of three new patients with X/Y 
translocations. Furthermore, cases with X/Y translocations reported in the literature and studies exploring the clinical 
genetic effects in patients with X/Y translocations were reviewed. All three female patients were carriers of X/Y trans-
locations with different phenotypes. The karyotype for patient 1 was 46,X,der(X)t(X;Y)(p22.33;q12)mat, patient 2 was 
46,X,der(X)t(X;Y)(q21.2;q11.2)dn, and patient 3 was 46,X,der(X)t(X;Y)(q28;q11.223)t(Y;Y)(q12;q11.223)mat. C-banding 
analysis of all three patients revealed a large heterochromatin region in the terminal region of the X chromosome. 
All patients underwent chromosomal microarray analysis, which revealed the precise copy number loss or gain. Data 
on 128 patients with X/Y translocations were retrieved from 81 studies; the phenotype of these patients was related 
to the breakpoint of the chromosome, size of the deleted region, and their sex. We reclassified the X/Y translocations 
into new types based on the breakpoints of the X and Y chromosomes.

Conclusion  X/Y translocations have substantial phenotypic diversity, and the genetic classification standards are not 
unified. With the development of molecular cytogenetics, it is necessary to combine multiple genetic methods to 
obtain an accurate and reasonable classification. Thus, clarifying their genetic causes and effects promptly will help 
in genetic counseling, prenatal diagnosis, preimplantation genetic testing, and improvement in clinical treatment 
strategies.
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Background
X/Y translocation is a rare chromosomal abnormality, 
with approximately 128 patients reported in the litera-
ture [1–11], most of which are limited to single patient 
reports and a few comprehensive analyses of complete 
families. Aberrations in sex chromosomes can affect 
gonadal development, leading to complex reproductive 
and endocrine disorders. In females, it may affect ovar-
ian function and uterine development. In males, it can 
lead to azoospermia, cryptorchidism, penis or testicu-
lar hypoplasia, or it may lead to ovotesticular disorders 
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of sex development [12], gynecomastia [10, 11, 13–15]. 
Although it has been reported in both men and women 
at birth [2], later diagnoses also occur, which limits pos-
sible medical treatments and surgical intervention [16]. 
Additionally, several studies proved that the presence of 
Y chromosome material in females leads to an increased 
risk of gonadoblastoma (10 to 30%) [17, 18].

There are many types of X/Y translocations. Hsu (1994) 
divided the category of Y/X translocations with der(X) 
into seven types and further classified the category of 
Y/X translocations with der(Y) into four types [1]. How-
ever, these classifications are complex and cannot be 
applied to current clinical cytogenetics.

This study conducted a comprehensive analysis of the 
clinical phenotypes, cytogenetics, and molecular genetics 
of three patients with rare X/Y translocations and their 
family members. We also reviewed the relevant pub-
lished literature, exploring the origin of derivative chro-
mosomes produced by X and Y translocations and the 
phenotype and fertility of patients carrying this derived 
chromosome. In addition, we provide suggestions on 
genetic counseling for patients and reclassify the X/Y 
translocations into new types based on the breakpoints 
of the translocated X and Y chromosomes.

Materials and methods
Patients
Three patients and their family members were recruited 
from the West China Second University Hospital. The 
patients visited our hospital for infertility or menstrual 
disorders. The present study was approved by the Medi-
cal Ethics Committee of West China Second University 
Hospital, Sichuan University. Informed consent to par-
ticipate in the study was obtained from all participants.

Methods
Chromosome G‑banding karyotype analysis
Peripheral blood (5  ml) was drawn into a heparin anti-
coagulant tube. Blood samples were processed according 
to The Association of Genetic Technologists (AGT) cytoge-
netic laboratory procedures and analyzed for peripheral 
blood lymphocyte karyotyping [19]. The diagnosis and 
results complied with the relevant standards of the Inter-
national System for Human Cytogenomic Nomenclature, 
2020 (ISCN, 2020). The chromosome image analysis 
system used for karyotyping and image capturing was a 
Metafer-Automated Slide Scanning Platform and Ikaros 
from Zeiss.

Chromosome C‑banding analysis
Chromosome C-banding preparation was performed 
according to The AGT cytogenetic laboratory procedures 
[19]. The chromosome dispersion was good and the 

length was suitable for splitting the middle chromosome 
image under a 100 × 100 microscope and image capture.

Fluorescence in situ hybridization (FISH)
FISH was used to analyze the sex chromosome cen-
tromeres. AneuVysion probe sets (Vysis/Abbott, Down-
ers Grove, IL, USA) were used for hybridization of 
metaphase cells according to the manufacturer’s proto-
col, and the analysis was based on the latest American 
College of Medical Genetics and Genomics (ACMG) 
guidelines [20].

Chromosomal microarray analysis (CMA)
Single nucleotide polymorphism-chromosomal microar-
ray analysis was performed using Affymetrix CytoScan 
750 K Array chips and Affymetrix Chromosome Analy-
sis Suite (ChAS) software, and the detected structure was 
analyzed according to the latest ACMG guidelines [21].

Literature review
A literature review was conducted through a targeted 
search for case reports and original articles on X/Y trans-
location in English journals archived in PubMed (https://​
www.​ncbi.​nlm.​nih.​gov/​pubmed/) and Chinese medi-
cal journals archived in the China National Knowledge 
Infrastructure CNKI (http://​www.​cnki.​net) and WAN-
FANG DATA (http://​www.​wanfa​ngdata.​com), from Janu-
ary 1978 to April 2022.

Results
Case presentation
Patient 1 (Fig. 1, III-4) was a female (age: 26 years, height: 
148  cm, and weight: 44  kg) who was admitted to our 
hospital for infertility after five years of normal sexual 
life. When she was 13  years old, her height was about 
120  cm, which was shorter than that of her peers (− 2 
SD), but no treatment was provided; the age at menarche 
was 13  years, and menstrual cycle was normal. At the 
age of 25, she underwent preimplantation genetic testing 
(PGT) at another hospital; 10 eggs were harvested, only 
one embryo was obtained, and implantation failed. There 
was no consanguinity in her family, several members 
were short in stature (140–150 cm; Fig. 1), and none had 
intellectual disabilities. Two of her cousins (Fig. 1, III-2, 
III-6) were short in stature, and one (Fig.  1, III-2) had 
had three biochemical pregnancies and was at 30 weeks 
of pregnancy at the time of reporting. Detailed clinical 
information is presented in Table 1. Ultrasonography of 
the uterine adnexa showed no significant abnormalities. 
Sex hormone testing showed estradiol (E2): 45.03; pro-
gesterone (P): 0.26; luteinizing hormone (LH): 4.34; folli-
cle-stimulating hormone (FSH): 7.34; and Anti-Müllerian 
Hormone (AMH) (ELISA): 1.96 ng/ml. Clinical materials 
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and laboratory test results are summarized in Table  1. 
Currently, the patient is planning to undergo adjuvant 
fertility therapy.

G-banding revealed a derivative X chromosome: 
add(X)(p22) (Fig.  2a). After C-banding verifica-
tion, it was found that a long heterochromatin region 
existed in the unknown segment of der(X) (Fig.  2c). 
No abnormal findings in FISH analysis. CMA showed 
arr[GRCh38] Xp22.33(251888_1772154) × 1 (1.52  Mb) 
(Fig.  2e), and no origin of heterochromatin was 
detected, nor SRY or AZF genes were identified. Pedi-
gree genetic analysis (Fig.  1) for members with the 
same clinical manifestations revealed that her mother’s 
(Fig.  1, II-8) G-banding karyotype (Fig.  2b) and her 
cousin’s (Fig.  1, III-2) CMA results (Fig.  2f ) were the 
same as hers (Fig. 1, III-4). The patient’s father (Fig. 1, 
II-7) and sister (Fig. 1, III-5), who had no clinical mani-
festations, showed normal karyotypes. Her maternal 
grandfather and grandmother had died and could not 
be traced. Combined with genetic and clinical analyses, 
the karyotype and array results were thus interpreted 
as: 46,X,der(X)t(X;Y)(p22.33;q12)mat.arr[GRCh38] 
Xp22.33(251888_1772154) × 1 (1.52  Mb), whereas the 
X deleted segment harbored the short-stature home-
obox (SHOX) gene. Since the Affymetrix CytoScan 
750 k chip used in this laboratory had no probe cover-
age in the Yq12 region, it was impossible to detect the 

translocation of this Y chromosome segment; how-
ever, combined with the large heterochromatin region 
shown in the chromosome C-banding results, we sus-
pect that this heterochromatin segment was from the Y 
chromosome Yq12 region.

Patient 2 was a female (age: 21 years, height: 161 cm, 
and weight: 57 kg) who had visited our hospital for men-
strual disorders for five years and secondary amenor-
rhea. Menarche began at 13  years of age, menstruation 
was normal from 13 to 15  years of age, and menstrual 
thinning started at 15  years of age (1–2  months). Thin-
ning gradually spaced out and amenorrhea developed at 
17 years of age. She reported that at the age of 16 years, 
she was suspected of having polycystic ovary syndrome 
(PCOS) and was treated symptomatically. At 18 years of 
age, ultrasonography suggested gonadal dysgenesis (GD). 
The patient was the only child in her family. Her parents 
were consanguineous (Fig. 3a), in a good health, and had 
no similar family history. Gynecological examination 
revealed internal genital abnormalities. Ultrasonography 
at 21 years of age showed that the uterus was small and 
both ovaries were streaks (Fig. 3b). Sex hormone testing 
showed E2: < 11.8 (low level); P: 0.23; LH: 24.2; FSH: 68.9 
(high level); and AMH (ELISA): < 0.06 ng/ml. The patient 
is currently being treated with hormone replacement 
therapy (HRT). Clinical materials and laboratory test 
results are summarized in Table 1.

Fig. 1  Pedigree of patient 1. The height of the relevant family members is marked in the figure, showing that most of family members had short 
stature. Five individuals had chromosomal karyotype results, and three members with short stature(II-8, III-2, and III-4) had the same 46,X,add(X)
(p22.3) as the proband, while an individual with normal height(II-8) has normal male karyotype



Page 4 of 15Liu et al. Molecular Cytogenetics            (2023) 16:7 

Ta
bl

e 
1 

Su
m

m
ar

y 
of

 c
lin

ic
al

 d
at

a 
an

d 
ge

ne
tic

 te
st

 re
su

lts
 fo

r t
hr

ee
 c

as
es

FS
H

 F
ol

lic
le

 s
tim

ul
at

in
g 

ho
rm

on
e,

 L
H

 L
ut

ei
ni

zi
ng

 h
or

m
on

e,
 T

 Te
st

os
te

ro
ne

, E
2 

Es
tr

ad
io

l, 
P 

Pr
og

es
te

ro
ne

, P
RL

 P
ro

la
ct

in
, A

M
H

 A
nt

i-M
ül

le
ria

n 
ho

rm
on

e

Ca
se

s
Pa

tie
nt

 1
Pa

tie
nt

 2
Pa

tie
nt

3

A
ge

 (y
ea

r)
26

21
23

H
ei

gh
t (

cm
)

14
8

16
8

15
0

W
ei

gh
t (

kg
)

44
57

54

M
ai

nl
y 

co
m

pl
ai

nt
s

Pr
im

ar
y 

in
fe

rt
ili

ty
M

en
st

ru
al

 d
is

or
de

rs
, s

ec
on

da
ry

 a
m

en
or

rh
ea

Pr
im

ar
y 

in
fe

rt
ili

ty

Se
x 

ho
rm

-o
ne

s
FS

H
(IU

/L
) (

2.
5–

10
.2

)
7.

34
68

.9
↑

3.
4

LH
(IU

/L
) (

1.
9–

12
.5

)
4.

34
24

.2
5.

1

T 
(n

g/
m

l) 
(0

.1
–0

.5
)

0.
03
↓

0.
23

0.
18

E2
(p

g/
m

l) 
(1

9.
5–

14
4.

2)
45

.0
3

 <
 1

1.
8↓

10
2.

3

P 
(n

g/
m

l) 
(0

.1
5–

1.
40

)
0.

26
0.

59
15

.2
9

PR
L(

ng
/m

l) 
(2

.8
–2

9.
2)

10
.4

8
8.

7
14

.9

A
M

H
(E

LI
SA

)(n
g/

m
l) 

(2
.5

–6
.3

)
1.

96
↓

 <
 0

.0
6↓

3.
97

U
ltr

as
ou

nd
N

or
m

al
 u

te
ru

s 
(4

.3
 ×

 4
.5

 ×
 4

.4
 c

m
); 

bo
th

 
ov

ar
ie

s 
ar

e 
no

rm
al

, a
nd

 le
ft

 o
va

rie
s 

ha
s 

2–
3 

fo
lli

cl
es

 in
si

de
, m

ax
im

um
 d

ia
m

et
er

 0
.7

 c
m

; 
no

rm
al

 b
ila

te
ra

l f
al

lo
pi

an
 tu

be
s

Sm
al

l u
te

ru
s 

(t
he

 d
ia

m
et

er
 o

f u
te

ru
s 

is
 

2.
4 

cm
), 

th
e 

en
do

m
et

ria
l t

hi
ck

ne
ss

 is
 a

bo
ut

 
0.

15
 c

m
 (s

in
gl

e 
la

ye
r);

 b
ila

te
ra

l s
tr

ea
k 

ov
ar

ie
s

N
or

m
al

 u
te

ru
s 

(3
.6

 ×
 4

.0
 ×

 4
.1

 c
m

); 
bo

th
 

ov
ar

ie
s 

ar
e 

no
rm

al
; n

on
-v

is
ua

liz
ed

 b
ila

te
ra

l 
fa

llo
pi

an
 tu

be
s 

(s
ur

gi
ca

l r
em

ov
al

ed
)

H
is

to
ry

 o
f p

re
gn

an
cy

 a
nd

 c
hi

ld
bi

rt
h

G
0P

0
G

0P
0

G
0P

0

Fa
m

ily
So

m
e 

fa
m

ily
 m

em
be

rs
 h

av
e 

sh
or

t s
ta

tu
re

, 
th

e 
m

ot
he

r a
nd

 c
ou

si
n’

s 
G

-b
an

di
ng

 k
ar

yo
-

ty
pe

s 
ar

e 
sa

m
e 

as
 th

at
 o

f t
he

 p
at

ie
nt

, w
hi

le
 

th
e 

fa
th

er
 a

nd
 s

is
te

r’s
 k

ar
yo

ty
pe

 a
re

 n
or

m
al

Pa
re

nt
s 

ar
e 

co
ns

an
gu

in
eo

us
, w

ith
 n

or
m

al
 

ph
en

ot
yp

es
, a

nd
 n

or
m

al
 G

-b
an

di
ng

 
ka

ry
ot

yp
e

Th
e 

m
ot

he
r h

ad
 th

e 
sa

m
e 

ka
ry

ot
yp

e 
as

 th
e 

pa
tie

nt
; a

nd
 h

ad
 th

re
e 

m
is

ca
rr

ia
ge

s. 
Th

e 
fa

th
er

, s
is

te
r a

nd
 tw

o 
un

cl
es

 h
ad

 n
or

m
al

 
G

-b
an

di
ng

 k
ar

yo
ty

pe
,

G
en

et
ic

 te
st

 re
su

lts
46

,X
,d

er
(X

)t
(X

;Y
)(p

22
.3

3;
q1

2)
m

at
.a

rr
[G

RC
h3

8]
Xp

22
.3

3 
(2

51
88

8_
17

72
15

4)
 ×

 1
(1

52
0 

kb
)

46
,X

,d
er

(X
)t

(X
;Y

)(q
21

.2
;q

11
.2

)d
n.

ar
r[G

RC
h3

8]
Xq

21
.2

q2
8(

86
02

56
30

_1
55

71
43

01
) ×

 1
,Y

q1
1.

22
2q

12
(1

84
43

27
6_

26
65

35
07

) ×
 1

46
,X

,d
er

(X
)t

(X
;Y

)(q
28

; q
11

.2
23

)t
(Y

;Y
)

(q
12

;q
11

.2
23

)m
at

. a
rr

[G
RC

h3
8]

Xq
28

(1
55

07
79

22
_1

55
70

03
85

) ×
 1

,Y
q1

1.
2

23
q1

2(
21

92
40

24
_2

66
53

50
7)

 ×
 2



Page 5 of 15Liu et al. Molecular Cytogenetics            (2023) 16:7 	

Xp22.3
3-Xqter

? Yq12-
Yqter

normal(X) der(X) normal(X) der (X)

a b

c d

e f 

Fig. 2  Cytogenetic and CMA results of patient 1, her mother and her cousin. a: G-banded karyogram (550 bands) of the patient, showing der(X) 
chromosome; b: G-banded karyogram (400 bands) of the patient’s mother, showing the same der(X) as patient 1; c: C-banded metaphase spread 
showing a large heterochromatin segment (indicated by an arrow) at the end of short arm of the der(X), which is suspected to be a part of 
chromosome Yq; d: Comparison and pattern representation of patient 1 (left) and her mother’s (right) X chromosomes. e: The results of CMA for 
patient 1 indicate the deletion of large segment of the X chromosome of 1.52 Mb (red box in e); f: The results of the CMA for patient 1’s cousin (III-2) 
is the same as that of patient 1 (red box), and no Y chromosome segments were found. Note There were differences in chromosomal banding levels 
because the patient and his mother did not undergo cytogenetic testing in the same laboratory



Page 6 of 15Liu et al. Molecular Cytogenetics            (2023) 16:7 

The G-banding karyotype showed a derivative X chro-
mosome: add(X)(q21) (Fig.  4a). After verification by 
C-banding, a long heterochromatin region was found 
in the unknown segment of der(X) (Fig.  4c). No abnor-
mal findings in FISH analysis. The CMA results were as 
follows: arr[GRCh38] Xq21.2q28(86025630_15571430
1) × 1 (69.689  Mb) Yq11.222q12(18443276_26653507) 
× 1 (8.21  Mb). There were large genomic homozygous 
regions (Fig. 4e, f ) and the SRY and AZF genes were not 
identified. Karyotype analysis of her parents showed no 
abnormalities (father’s karyotype Fig. 4b). The karyotype 
and array results were thus interpreted as: 46,X,der(X)
t(X;Y)(q21.2;q11.2)dn.arr[GRCh38] Xq21.2q28(8602563
0_155714301) × 1, Yq11.222q12(18443276_26653507) × 1.

Patient 3 (Fig.  5, III-4) was a female (age: 24  years, 
height: 150 cm, and weight: 54 kg) who visited our hos-
pital for infertility. She had a normal sexual life and a 
history of surgery for an ovarian cyst at 18 years of age 
and bilateral tubal ligation due to bilateral hydrosalpinx 
at 23 years of age. No special facial features or menstrual 
histories were noted. Her parents were not consanguine-
ous and the mother (Fig.  5, II-4) had had three miscar-
riages (Fig.  5, III-1, III-2, III-5). The older sister (Fig.  5, 
III-3) was 28  years old, and her menstruation was nor-
mal. Recent ultrasonography showed that the uterus and 
ovaries were normal, and sex hormone testing revealed 
E2: 102.3; P: 15.29; LH: 5.1; FSH: 3.4; and AMH (ELISA): 
3.97  ng/ml. The clinical data and laboratory test results 
are summarized in Table 1.

G-banding karyotyping showed a derivative X chro-
mosome: add(X)(q28) (Fig.  6a). A long heterochroma-
tin region existed in the unknown region of the derived 
X chromosome (Fig. 6c). No abnormal findings in FISH 
analysis. The CMA results were as follows: arr[GRCh38] 
Xq28(155077922_155700385) × 1 (0.622 Mb),Yq11.223q1
2(21924024_ 26,653,507) × 2 (4.729  Mb) (Fig.  6e, f ). and 
no SRY or AZF genes were detected. The cytogenetic 

analysis of the patient’s mother (Fig. 5, II-4) was consist-
ent with that of the proband (Fig.  6b). For the patient’s 
father (Fig.  5, II-3), sister (Fig.  5, III-3), and mother’s 
siblings (Fig.  5, II-1, II-2), the chromosomal karyotyp-
ing analysis did not show obvious abnormalities. The 
karyotype and array results were thus interpreted as: 
46,X,der(X)t(X;Y)(q28;q11.223)t(Y;Y)(q12;q11.223)mat.
arr[GRCh38] Xq28(155077922_155700385) × 1, Yq11.223
q12(21924024_26653507) × 2.

Literature review and reclassification
A total of 81 articles were retrieved, where 128 patients 
with X/Y translocation were reported, of which, approxi-
mately 32 articles analyzed the core family. Accord-
ing to Hsu’s report in 1994 [1], X/Y translocations are 
divided into 11 types (7+4), and the most common types 
are types 1 and 2. In our study, patients were reclassi-
fied according to the location of the breakpoints in the 
translocated X and Y chromosomes and the centromeric 
composition of the derived chromosomes. Patients with 
breakpoints located at Xp22 were categorized into five 
types (types I-V) based on the composition of the sex 
chromosome centromere. Type I/type II/type III are 
consistent with Hsu’s type 1/type 2/type 3. Patients with 
46,X,der(X)t(X;Y)(p22;p11) were categorized into type 
IV, and Hsu’s type A/type B were merged into type V. 
Patients with breakpoints located outside of Xp22 were 
classified as type “other”. The reclassifications and pheno-
types are summarized in Tables 2, 3, 4.

The patients belonging to type I [46,Y,der(X)t(X;Y)
(p22;q11)], having complete absence of X(pter → p22) 
and two copies of Y(q11 → qter), one on the X chromo-
some and one as a normal Y, were all males (33/33). 
In these patients, the der(X) was inherited from their 
mother (30/33) or was of unknown origin (3/33). Most 
type I patients had abnormal clinical manifestations, 
such as short stature and limb anomalies [22], intellectual 

Fig. 3  Pedigree and gynecological ultrasound results of patient 2. a: The pedigree shows that the patient’s parents are consanguineous and the 
G-banding karyotype of both parents is normal; b: Uterine and appendage ultrasound shows a small uterus, and the bilateral ovaries are unclear
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disability [11], and may have gonadal abnormalities (eg. 
cryptorchidism) [22, 23]. Those with type II [46,X,der(X)
t(X;Y)(p22;q11)], type III [46,X,psu dic(X;Y)(p22;p11)], 

and type IV [46,X,der(X)t(X;Y)(p22;p11)] had an 
X(pter → p22) single copy. In type II patients the major-
ity were females and have a single copy of Y(q11 → qter)

b

dc 

a

e f 

Yq11.222-Yqter 

Xp2ter-Xq21.2

normal(X) der(X) normal(Y)

Fig. 4  Cytogenetic and CMA results of patient 2. a: The results of the G-banded karyogram (550 bands) of patient 2(a derivative X chromosome 
is indicated by an arrow); b: The result of the G-banded karyogram (550 bands) of the patient’s father: a normal male karyotype; c: Fragment of 
C-banded metaphase spread of patient 2 (photomicrography), showing a large heterochromatin region at the end of the long arm of derivative X 
chromosome; d: patient 2’ X chromosome (left) and her father’s Y chromosome (right) comparison chart, the results show that the Xq21.2 (of der(X)) 
unidentified source segment of the band are more consistent with the father’s Yq11.2 band; e, f: CMA results show that a large 69.689 Mb deletion 
of the long arm of the X chromosome(red box in e), and a partial duplication of the long arm of the Y chromosome (red box in f ), as well as multiple 
regions with AOH (red regions in the figure)
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(53/55).Types III and IV patients had a single copy of 
Y(p11 → qter) or Y(p11 → pter), respectively. The pheno-
typic sex of reported patients depends on the presence 
of SRY gene, however, three patients (one from type III 
and two from type IV) were presenting with a female 
phenotype despite having SRY gene [24–26]. Type V 
[46,X,der(Y)t(X;Y)(p22;q11)] patients had X(p22 → qter) 
and Y(pter → q11) single copies, and an extra copy of 
X(p22 → pter), and all patients were males (6/6). The 
details are presented in Table 3.

Type “other” included 21 patients, of which, 15 were 
females and 6 were males. Patients with type “other” 
were more likely to have gonadal abnormalities (14/21). 
Almost all patients had at least one complete X-chromo-
some segment (details shown in Table 4) [5–8, 27–40].

Discussion
The inheritance of structurally altered X and Y chromo-
somes differs from that of autosomes, and it is difficult for 
X/Y balanced translocation carriers to have a descend-
ant with a balanced chromosomal structure. Transloca-
tion between the X and Y chromosomes can impact the 
pairing of sex chromosomes during meiosis and result in 
different patterns of X chromosome inactivation [41, 42], 
which can affect growth and development.

In the Patient 1 with X chromosome deletion followed 
by der(X)t(X;Y), the deleted region (Xp22.3) contains 

SHOX gene required for normal bone formation. Its 
haplo-insufficiency can result in short stature and Leri-
Weill dyschondrosteosis, which usually has a more 
severe phenotype in females [43, 44]. The patient (Fig. 1, 
III-4), her mother (Fig. 1, II-8), and cousin (Fig. 1, III-2) 
showed symptoms of short stature. As no genetic test-
ing was available for male patients in this family, it was 
impossible to identify whether the short male patients in 
the family (Fig. 1, II-2, II -9) and the cousin (Fig. 1, III-
6) carried the same der(X); however, based on the pedi-
gree, we speculated that the original patient (Fig. 1, I-2) 
may have passed the der(X) to her sons (Fig. 1, II-2, II-9) 
and daughters (Fig. 1, II-5, II-8), then to her granddaugh-
ters (Fig. 1, III-2, III-4, III-6). The proband’s female-spe-
cific hormones had no significant abnormalities, except 
for a decrease in AMH to 0.98 ng/ml, indicating a mild 
decrease in ovarian reserve function. After a year of treat-
ment and good condition in daily life, the latest AMH 
level was 1.96 ng/ml, indicating that her ovarian reserve 
function showed a good recovery. Her mother had given 
birth to two children, with no history of miscarriage, 
and began experiencing irregular menstruation and pro-
longed menstrual cycles around the age of 40 years. She 
did not undergo hormonal profiling, so the possibility 
of premature ovarian failure (POF) cannot be ruled out. 
Other women with short stature in this family (Fig.  1, 
II-5, II-8), who may carry der(X), have all been pregnant. 
Patient 1 and her cousin still have a chance of becoming 
pregnant, although they experienced recurrent spontane-
ous abortion (RSA) (Fig. 1, III-2) or infertility (Fig. 1, III-
4), which may be result from recombination changes of 
der(X) during meiosis. Genetic counseling was provided 
for the patient with information on the nature, mode of 
inheritance, the genetic risk for offspring, and prenatal 
testing issues. Currently, Patient 1 has pregnancy desire 
and assisted reproductive technology (ART) has been 
proposed for the infertility treatment.

Patient 2 exhibited X chromosome deletion (q21.2-
qter)(86025630_155714301) × 1 and translocated Y(q11.2-
qter)(18443276_26653507) × 1 region followed by der(X)
t(X;Y). The deleted region X(q21.2-q28) included mul-
tiple dosage-sensitive genes that may cause diseases. 
The Y region contains AZF factors that are required for 
spermatogenesis that are not relevant to the female phe-
notype. The parents were consanguineous, and their kar-
yotypes were normal; therefore, the source of der(X) was 
an abnormal recombination between X and Y during the 
first paternal meiosis [7], forming a sperm with a deriva-
tive X (Fig.  7). The patient had abnormal reproductive 
system development, including a small uterus and streak 
ovaries, and her sex hormones showed relatively high 
levels of FSH and low E2. The AMH level (ELISA) was 
extremely low, indicating ovarian dysfunction. Currently, 

Fig. 5  Pedigree of patient 3. Six family members underwent 
G-banding karyotyping; the mother’s karyotype results were 
consistent with patient 3, and the other results were normal. The sex 
of the three aborted embryos is unknown
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Xpter→Xq
28

Yq11.223→Yq1
2::Yq11.223→Y
qter

a b

c d

normal(X) der (X) normal(X) der(X)

e f 

Fig. 6  Cytogenetic and CMA results of patient 3 and abnormal X chromosome. a: The results of the G-banding (550 bands) of patient 3, there is 
a derivative X chromosome (arrow); b: The mother’s G-band karyotype (550 bands) shows the same der(X) (arrow) as in patient 3; c: C-banding of 
patient 3, showing larger heterochromatin segments in the long arm end segments of the der(X); d: Comparison of X chromosomes of patient 3 
(left) and her mother (right). e, f: CMA results showing deletions of large segment at the end of the long arm of chromosome X (red box in e) and 
two copies of the segments of the long arm part of the chromosome Y (red box in f )
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Table 2  Summary of the two classifications

New types Hsu’s types

Basis Type Karyotype Type Karyotype

Xp22 type I 46,Y,der(X)t(X;Y)(Xqter → Xp22::Yq11 → Yqter) type 1 46,Y,der(X)t(X;Y)(Xqter → Xp22::Yq11 → Yqter)

type II 46,X,der(X)t(X;Y)(Xqter → Xp22::Yq11 → Yqter) type 2 46,X,der(X)t(X;Y)(Xqter → Xp22::Yq11 → Yqter)

type III 46,X,psu dic(X;Y)(Xqter → Xp22::Yp11 → Yqter) type 3 46,X,psu dic(X;Y)(Xqter → Xp22::Yp11 → Yqter)

type IV 46,X,der(X)t(X;Y)(Xqter → Xp22::Yp11 → Ypter) type 4 46,X,der(X)t(X;Y)(Xqter → Xp11.2::Yq11 → Yqter)

type V 46,X,der(Y)t(X;Y)(Ypter → Yq11::Xp22 → Xpter) type 5 46,X,der(X)t(X;Y)(Xpter → Xq22::Yq12 → Yqter)

Not-Xp22 type other – type 6 46,X,der(X)t(X;Y)(Xpter → Xq22::Yq11 → Yqter)

type 7 46,X,psu dic(X;Y)(Xpter → Xq22::Yp11 → Yqter)

type A 46,X,der(Y)t(X;Y)(Ypter → Yq11.2::Xp22.1 → Xpter)

type B 46,X,der(Y)t(X;Y)(Ypter → Yq11.23::Xp22.1 → Xpter)

type C 46,X,der(Y)t(X;Y)(Ypter → Yq11.21::Xp21 → Xpter)

type D 46,X,der(Y)t(X;Y)(Ypter → Yq11.23::Xq28 → Xqter)

Table 3  Summary of reported Xp22; Yq11 and Xp22; Yp11 translocation

M male, F female, P positive, patients present with this clinical phenotype, Pat paternal, Mat maternal. Unknown: There is no mention of the relevant circumstances in 
the text

The exception type Type I Type II Type III Type IV Type V

Gender M F M F M F M F M F

Category Number 33 0 2 53 2 2 7 2 6 0

Origin Pat 0 0 0 1 0 0 0 0 0 0

Mat 29 0 0 8 0 0 0 0 0 0

De novo 0 0 1 8 1 0 2 1 2 0

Unknown 4 0 1 36 1 2 5 1 4 0

Stature Short 26 0 0 42 2 1 4 0 2 0

Normal 6 0 2 10 0 0 3 1 0 0

Unknown 1 0 0 1 0 1 0 1 4 0

Limbs Short 12 0 0 8 0 0 2 1 4 0

Normal 21 0 2 45 2 2 5 1 2 0

Unknown 0 0 0 0 0 0 0 0 0 0

Gonad Abnormal 10 0 1 9 2 1 3 0 3 0

Normal 1 0 0 27 0 0 1 1 0 0

Unknown 22 0 1 17 0 1 3 1 3 0

Psychomotor movements Abnormal 10 0 0 4 0 0 0 0 3 0

Normal 22 0 2 49 2 2 7 1 3 0

Unknown 1 0 0 0 0 0 0 1 0 0

Mental Abnormal 13 0 0 4 0 0 0 0 2 0

Normal 17 0 2 47 2 2 7 1 4 0

Unknown 3 0 0 2 0 0 0 1 0 0

Facial deformities P 15 0 1 7 0 0 1 0 3 0

Eye abnormalities P 1 0 0 2 0 0 0 1 0 0

Ichthyosis P 12 0 0 1 0 0 1 0 0 0

Chondrodysplasia punctata P 6 0 0 1 0 0 1 0 0 0

Leri-Weill dyschondrosteosis P 9 0 0 4 0 1 1 0 2 0
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across eight articles, nine patients had the Xq/Yq trans-
location, including a family study where phenotypes 
varied in severity and included menstrual disorders, pri-
mary/secondary amenorrhea, POF, streak gonads, and 
non-pregnant chorionic carcinoma [29, 31]. Studies by 
Tharapel et  al. showed that deletion of different regions 
of the long arm of the X chromosome can be associated 

with GD or POF. Women with X(q13-qter) region dele-
tion were more likely to develop complete ovarian failure, 
whereas women with X(q24-qter) deficiency may have 
symptoms of POF [45]. Researchers have speculated that 
X(q13-q26) is the “critical area” for ensuring normal ovar-
ian function, which conforms to the observations made 
for Patient 2 [46, 47]. Baronchelli et  al. studied a family 

Table 4  Summary of type “other” (new) for Y/X translocation

“+”: with an exception in this regard; “−”: there is no anomaly in this regard; n: this aspect is not described

Type “other” include types 4\5\6\7, type C\D and other karyotypes

M male, F female
* : This patient is a sex reversal case report

Detailed results Gender Short 
stature

Mental 
retard-
ation

Head and 
face retard-
ation

Limbs 
retard-
ation

Optic 
abnormalities

L-W 
Chondrosclerosis

Psychomotor 
abnormalities

Gonad 
abnormalities

46,X,der(X)t(X;Y)(q22;q11)dn [5] F − − − − − − − +
46,X,psu dic(X)t(X;Y)(q22;p11) 
[6]

F − − − − − − − +

46,X,der (X)t(X;Y)(p11.2;q11)
dn [27]

F + − − − − − − +

46,X,der(X)t(X;Y)(q25;q12) [28] F − − − − − − − +
46,X,der(X)t(X;Y)(q26.2;q11.223) 
[29]

F − − − − − − − +

46,X,der(X)t(X;Y)(q26.2;q11.223)
mat [29]

F − − − − − − − +

46,X,der(X)t(X;Y)(q26.3;q11.223) 
[30]

F n − − − − − − −

46,X,der (X)t(X;Y)(q28;q11.2)
dn [31]

F − − − − − − − +

46,X,der(Y)t(X;Y)(p21.1;q11)
dn [32]

F + + + − − − − n

46,X,der(Y)t(X;Y)(p21.2;p11.3) 
[33]

F + − + − − − + +

46,X,der(Y)t(X;Y)(q13.1;q11.223) 
[34]

F − − − − − − − +

47,XY,der(Y)t(X;Y)(p21.1;p11.2)* 
[35]

F n − + − + − − +

46,X,der(Y)t(X;Y)(q28;q11.23)
dn [36]

M − − + − − − + +

46,X,der(Y)t(X;Y)(p21.3;q11.21) 
[36]

M − − + + + + + +

46,X,psu dic(X;Y)(p11.3;p11.1) 
[37]

F + − − − − − − n

47,X,der(X)t(X,Y)(p11.4,p11.2)
X2[65%]/46,X,der(X)
(p11.4,p11.2)[35%]mat [38]

F + − − − − − − n

45,X[25%]/46,X,der(X)t(X;Y)
(p11.4,p11.2)[75%] [37]

F + − − − − − − −

46,X,psu dic(X;Y)(p22;q11)
dn [38]

M + − − − − − + n

45,der(X)t(X;Y)(p22.3;p11.2)
[8]/46,t(X;Y)(p22.3;p11.2)[12] [7]

M − − − − − − − +

46,X,dic(X;Y)
(p22.33;p11.32)/45,X/45,dic(X;Y)
(p22.33;p11.32) [8]

M − n − − − − − +

45,der(X)t(X;Y)(p22;p11.3)
ins(X;Y)(p22;q12)[[80]/45,X[20] 
[40]

M + − + − − − − n
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in which the daughter’s der(X)t(X;Y)(q26.2;q11.223) 
came from the mother, and both the mother and daugh-
ter had symptoms of POF [29]. This indicated that it is 
still possible to have children with X(q26.2-qter) deletion. 
However, the breakpoint in our patient is more proximal 
and thus it was associated with a more severe phenotype. 
Premature ovarian failure 2A (POF2A) was described to 
result from deletion or mutation in the DIAPH2 gene on 
chromosome Xq22 (OMIM# 300108). The patient’s par-
ents were consanguineous, and CMA indicated multiple 
regions with absence of heterozygosity (AOH), which did 
not completely exclude the patient’s clinical correlation 
with these regions. Genetic counseling was provided for 
the patient with information on the nature, and the risk 
of implications about gonadoblastoma. Patient 2 was now 
treated with HRT and followed up clinically.

Patient 3 had X chromosome deletion (Xq28)
(155077922_155700385) × 1 followed by der(X)t(X/Y). 
Xq28 is a gene rich region that contains many pathogenic 
loci that have X-linked recessive inheritance. The patient’s 
mother (Fig. 5, II-14) also carried the same der(X), with 
regular menstruation and menopause at 50 years of age 
and without abnormal phenotype. The 0.622 Mb deletion 
region in our patient did not involve POF susceptibility 
genes. Therefore, Patient 3 and her mother did not have 
manifestations of ovarian dysfunction. Family analysis 
revealed that her mother (Fig.  5, II-4) had three spon-
taneous abortions (Fig. 5, III-1, III-2, III-5), and did not 

give birth to a boy. The mother’s X chromosome origin 
could not be traced, as her maternal grandfather (Fig. 5, 
I-1) and grandmother (Fig. 5, I-2) had passed away, and 
both uncles (Fig.  5, II-1, II-2) had a normal male kar-
yotype. However, Delon et  al. reported a karyotype of 
46,X,der(X)t(X;Y)(q28;q11.2)dn in a 28-year-old female 
patient with infertility similar to our Patient 3 [31]. 
Therefore, based on the pregnancy history of the patient’s 
mother, we speculated that this der(X) may undergo 
recombination changes during meiosis, which results in 
the failure to produce normal embryos. Alternatively, 
multiple pathogeneic genes in the deletion region of the 
X chromosome, such as RAB39B (OMIM 300774) and 
TMLHE (OMIM 300777) have an XLR inheritance and 
nullosomy of which can lead to a severe phenotype in 
the male fetus, causing miscarriage or embryo lethal-
ity [48]. The gained Y(q11.223q12)segment in which no 
SRY or AZF genes were detected; therefore, this region 
has no clinical correlation in this female patient. Genetic 
counseling was provided for the patient with information 
on the nature, the genetic risk for offspring and prenatal 
testing issues. Currently, the patient has pregnancy desire 
and ART has been proposed because her bilateral fallo-
pian tubes have undergone ligation surgery.

In most of studies related to X/Y translocation 
(Tables  3 and 4), breakpoints in the X/Y translo-
cation are located in Xp22/Yq11 (type I/type II/
type V, approximately 77.19%). However, it is worth 

Fig. 7  The chromosomes X and Y pair and recombine at the meiosis, and fertilization. It is speculated that the patient 2’s der(X) is derived from the 
abnormal recombination of X chromosome Xq21.2 and Y chromosome Yq11.222 during meiosis of paternal spermatocytes, with an idiogram of 550 
band
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mentioning that only one patient with definitive child-
bearing has been reported among all male patients [9], 
while many women have had children. Patients with 
Xp22/Yq11 translocations tend to complain of short 
stature. Some patients with the Xp22/Yq11 transloca-
tion also have Leri-Weill dyschondrosteosis, which is 
characterized by Madelung deformity. Male patients 
may also have contiguous gene deletion syndrome 
manifestations, such as intellectual disability, skel-
etal anomalies, psychomotor abnormalities, gonadal 
abnormalities, facial deformities, chondrodysplasia 
punctata (ARSE gene deletion) [49], ichthyosis (STS 
gene deletion) [50], and other symptoms, which are 
usually absent or less intense in female patients [3].

A small number of breakpoints were located at 
Xp22/Yp11 (type III/type IV, approximately 8.77%). 
Although a bias may occur due to the small number 
of patients, it is interesting to note that none of the 
patients with Xp22/Yp11 translocation had significant 
signs of deformity, except for one patient with induced 
fetal abortion due to an upper extremity abnormal-
ity [23]. Male patients with Xp22/Yp11 transloca-
tion in types III and IV have karyotypes of 46,X,psu 
dic(X;Y)(p22;p11) and 46,X,der(X)t(X;Y)(p22;p11) 
and 45,der(X)t(X;Y), respectively. Both types have a 
deletion of the chromosome Y segment, resulting in 
phenotypic effects related to disorders of sexual devel-
opment. Three female patients with type III and type 
IV had verified SRY gene in der(X) [24–26]. This could 
be partly explained by the inactivation of der(X), which 
may spread into the translocated Yp segment, resulting 
in the SRY gene expression being suppressed or com-
pletely inhibited [33, 35, 42, 51]. Female patients with 
type IV had milder phenotypes than those with other 
types, indicating that Yp may compensate for the Xp22 
partial gene deletions, which also matches the pres-
ence of a pseudoautosomal region (PAR1) in Xp and 
Yp [52, 53]. However, they still had gonadal abnormali-
ties, which is consistent with previous studies showing 
that two normal X chromosomes are essential for nor-
mal ovarian function [54].

Breakpoints rarely occur at other locations such as 
Xp21, Xp11, and Xq (Table  4, approximately 14%), 
and the karyotype is mostly 46,X,der(X)/46,X,der(Y) 
among female patients. The two reported male patients 
had severe phenotypic effects [36], illustrating that the 
insufficient gene dosage of chromosome X may affect 
male survival. The incidence of gonadal abnormalities 
was significantly higher in female patients.

All patients in the above classifications contained at 
least one normal X chromosome, except for those with 
type I. Patients with type I also had a higher probabil-
ity of nervous, gonadal, and bone dysplasia than those 

with other types, indicating that the complete human 
genome is essential for human development.

Conclusion
X/Y translocation is complex in both clinical presentation 
and classification, and we reviewed this category of cases 
by performing systematic clinical and cytogenetic analyses 
of three patients with different phenotypic presentations. 
This information will further improve understanding of the 
clinical and genetic aspects of X/Y translocations.
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