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Abstract
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Background: Recently, array-comparative genomic hybridization (@CGH) platforms have significantly improved the
resolution of chromosomal analysis allowing the identification of genomic copy number gains and losses smaller
than 5 Mb. Here we report on a young man with unexplained severe mental retardation, autism spectrum disorder,
congenital malformations comprising hypospadia and omphalocele, and episodes of high blood pressure.

An~6 Mb interstitial deletion that includes the causative genes is identified by oligonucleotide-based aCGH.

Results: Our index case exhibited a de novo chromosomal abnormality at 2g22 [del(2)(g22.1g22.3)dn] which was
not visible at the 550 haploid band level. The deleted region includes eight genes: HNMT, SPOPL, NXPH2, LOC64702,

Discussion: aCGH revealed an ~6 Mb deletion in 2g22.1 to 2g22.3 in an as-yet unique clinical case associated with
intellectual disability, congenital malformations and autism spectrum disorder. Interestingly, the deletion is
co-localized with a fragile site (FRA2K), which could be involved in the formation of this chromosomal aberration.
Further studies are needed to determine if deletions of 2g22.1 to 2g22.3 define a new microdeletion syndrome.

Keywords: Array-comparative genomic hybridization (@CGH), Fluorescence in situ hybridization (FISH), 2g22
deletion syndrome, Birth defects, Hypospadia, omphalocele, Severe mental retardation, Essential hypertension, High

Introduction

Intellectual disability (ID) or Mental Retardation (MR)
affects a large number of individuals, and was recently
estimated to have a prevalence of 1% in the general
population [1]. Chromosomal abnormalities are causa-
tive factors in 4% to 34.1% of cases, detected mainly by
G-band-based banding studies [2,3]. The advent of
array-comparative genomic hybridization (aCGH) has
increased the detection rate by an additional 15-20%
[4], generally by identifying submicroscopic chromo-
somal abnormalities. This progress has enabled a refined
association of chromosomal aberrations and potentially
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underlying disease-causing genes, leading to better
karyotype/genotype-phenotype correlations, and more
qualified genetic counseling for families [5-8].

Genes associated with ID/MR can be found distributed
throughout the human genome. According to the OMIM
database [9] six genetic syndromes have been assigned to
chromosomal region 2q22 to 2q23, including, Mowat-
Wilson Syndrome (MWS) (MIM:235730); Nemaline
Myopathy 2 (MIM:256030); Meier-Gorlin Syndrome 2
(MIM:613800); Susceptibility to Asthma (MIM:600807);
Idiopathic Generalized Epilepsy 9 (MIM:607682); and,
Hypogonadism, Alopecia, Diabetes Mellitus, Mental Retard-
ation and Extrapyramidal Signs syndrome (MIM:241080).
MWS is the best known disease in 2q22 ~ q23, presenting
multiple congenital anomalies including Hirschsprung dis-
ease (HD) (MIM:142623) and MR. It has been recently
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associated with truncating mutations and/or heterozygous
deletions of the ZEB2 homeobox gene (ZFHXI1B) [10-13].

Here we present a Brazilian patient carrying a hitherto
unreported ~6 Mb microdeletion in 2q22.1 to 2q22.3
upstream and outside the ZEB2 region [14]. The
patient’s phenotype comprises severe autism spectrum
disorder, associated to ID/MR, and congenital malforma-
tions, such as, omphalocele and hypospadia with crypt-
orchidism. Episodes of essential hypertension were an
important feature in adolescence and were controlled
with specific anti-hypertensive agents.

Case presentation

The patient is the only son of a young non-
consanguineous couple, without any familial history. He
was born at term by cesarean section; weight 3.950 g
(>P50™ percentile); length 51 c¢cm (50™ percentile). The
patient had his first genetic evaluation at 4 years of age,
being referred due to global developmental delay, lack of
speech, an omphalocele (corrected by surgery), and bala-
nic hypospadia with bilateral cryptorchidism. At physical
examination he presented a coarse face with deep-set
eyes, thick eyebrows, protruding tongue, small teeth,
pointed chin, bulbous nose, wide spaced and hypoplastic
nipples, scoliosis, corrected balanic hypospadia with a
flattened gland, bilateral clinodactyly of the fifth finger,
non-specific dermatoglyphic pattern, global developmen-
tal delay and behavioral disorder. A neurological evalu-
ation through the Childhood Autism Rating Scale
(CARS) protocol revealed a score of 44.5, compatible
with an autism spectrum disorder.

Clinical follow-up proceeded on different occasions,
and a series of hypertension episodes were detected
when the patient was 17 years old, ranging from
150x100 mm Hg to 140x80 mm Hg. His body mass
index (BMI) was 40 kg/m? without any echocardiogram
or electrocardiogram disturbance. Complete blood
count, cranial cerebral tomography, thyroid hormones
and biochemical evaluation were all normal, except for
high triglycerides (289 mg/dl [normal values: 50—
200 mg/dl]). He was treated with an angiotensin-
converting enzyme inhibitor (captopril 25 mg daily) and
dietetic measures, losing more than 40 kg in 2 years.

Recently, a new clinical evaluation was performed. He
is currently 23 years old and presents in good physical
health, with a BMI of 27.5 kg/m® and normalization of
his blood pressure without the use of antihypertensive
drugs. He still suffers from a severe behavioral disorder,
occasional tantrums, stereotyped movements of his
trunk and repetitive whistling. Such clinical signs have
improved dramatically with the use of antipsychotic
drugs. Differential diagnoses such as Smith-Magenis,
Simpson-Golabi-Behmel and Beckwith-Wiedemann syn-
dromes have been ruled.
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Results
In the current case, G-banding and subtelomeric screen-
ing as well as molecular testing for the FMRI and FMR2
genes were all normal (data not shown). aCGH identified
an interstitial deletion of 6 Mb in the long arm of
chromosome from 2q22.1 to 2q22.3, spanning positions
138,750,000 to 144,750,000 (Figure 1) and comprising
eight genes (Table 1) [14]. The molecular cytogenetic
karyotype according to ISCN 2009 was designated as:
arr 2q22.1q22.3(138,750,000—144,750,000)x1. Seven out
of 10 FISH probes used in the 2q22.1 band confirmed
the deletion (Table 2). Eight to fourteen metaphase
spreads were evaluated (Figure 2). The absence of
xanthurenic acid in the patient’s urine showed that the
metabolic pathway of tryptophan was not altered.
Human Genome Assembly Build 37 (hg19) shows that
the region 2q22.1 to 2q22.3 is covered by small copy
number variations, inversions (structural variations) and
InDels, but no sequence gaps.

Discussion
A 23-year-old patient with ID/MR, autism, essential
hypertension, and congenital malformations including
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Figure 1 NimbleGen whole-genome oligonucleotide aCGH
profile for chromosome 2q. The ideogram (grey bars) depicts
2022.1 to 2922.3 genomic regions with the cytogenetic bands on
the long arm of chromosome 2 (not on scale). The ~ 6 Mb
interstitial deletion interval at 2g22.1-q22.3 [hg19, chr2: 138,750,000-
144,750,000 bp] is indicated by a red horizontal line below zero and
the two black dotted vertical lines.




Mulatinho et al. Molecular Cytogenetics 2012, 5:30
http://www.molecularcytogenetics.org/content/5/1/30

Page 3 of 7

Table 1 Genes within the 2q22.1 to 2q22.3 deleted region according to OMIM [9]

gene symbol name OMIM # description function
HNMT NM_006895 605238 Homo sapiens histamine [t metabolizes Histamine in mammals. This
N-methyltransferase (HNMT), gene encodes the first enzyme, which is
transcript variant 1. found in the cytosol and uses S-adenosyl-L-
methionine as the methyl donor. This variant
(1) represents the longest transcript and it
encodes the longest protein (isoform 1).
SPOPL NM_001001664 Homo sapiens speckle-type POZ -
protein-like (SPOPL), mRNA
NXPH2 NM_007226 604635 Homo sapiens neurexophilin 2 -
(NXPH2), m RNA.
LOC647012 NR_033658 Homo sapiens YY1 transcription -
factor pseudogene (LOC647012),
non-coding RNA.
LRP1B NM_018557 608766 LOW DENSITY LIPOPROTEIN LRP1B belongs to the low density lipoprotein
RECEPTOR-RELATED PROTEIN 1B (LDL) receptor gene family. These receptors
play a wide variety of roles in normal cell
function and development due to their
interactions with multiple ligands.
KYNU NM_001032998; 605197 Homo sapiens kynureninase Kynureninase is a pyridoxal-5'-phosphate
NM_003937 (KYNU) (pyridoxal-P) dependent enzyme that
catalyzes the cleavage of L-kynurenine and
L-3-hydroxykynurenine into anthranilic and
3-hydroxyanthranilic acids, respectively.
Kynureninase is involved in the biosynthesis
of NAD cofactors from tryptophan through
the kynurenine pathway. Alternative splicing
results in multiple transcript variants.
ARHGAP15 NM_018460 610578 Homo sapiens Rho GTPase RHO GTPases (see ARHA; MIM 165390)
activating protein 15 regulate diverse biologic processes, and
(ARHGAP15), mRNA their activity is regulated by RHO GTPase-
activating proteins (GAPs), such as ARHGAP15
GTDC1 NM_018460; 61065 Homo sapiens glycosyltransferase- GTDC1 is ubiquitous expressed at relatively
NM_024659; like domain containing 1 (GTDC1) high levels in lung, spleen, testis, and

NM_001006636

peripheral blood leukocytes, suggesting
that it may have biochemical functions in
these organs.

an omphalocele and hypospadias with cryptorchidism is
reported. He carries an ~6 Mb de novo microdeletion at
2q22.1-22.3 identified by an oligonucleotide aCGH
panel [arr 2q22.1¢22.3(138,750,000—144,750,000)x1 dn]
according to Human Genome Assembly Build 37 (hgl9).
Table 3 summarizes the clinical and genomic data
from our index case and four patients described in the
Decipher database with overlapping deletion intervals
(138,750,000 to 144,750,000 bp) [17]. ID/MR is a com-
mon clinical feature, but none of the other listed cases
presented with congenital malformations such as those
found in our patient. Besides ID/MR, two patients show
other common clinical features: strabismus and thick
eyebrows (Patient 2566); and strabismus, bulbous nasal
tip, and hypoplastic/inverted/absent nipples (Patient
1607). Interestingly, Patient 1607 has a complex karyo-
type involving chromosomes 2, 3 and 5 [18]. None of
the individuals listed in Table 3 shared the exact break-
points at 2q22.1-q22.3 as observed in our patient [17].
A child with MWS presenting with delayed psycho-
motor development, hypotonia, a variety of dysmorphic

features, genitourinary anomalies and a severe course of
HD has been described with a deletion at 2q22.2 to
2q22.3 [143,468,147-147,106,860] [19]. This 3.6 Mb ab-
erration included ZEB2 and three other genes not cur-
rently associated with disease-KYNU, ARHGAPI15 and
GTDClI-all encoding for proteins involved in ubiquitous
and non-specific pathways [20-22]. This deletion segment
overlaps with our case in an~12 Mb [143,468,147—
144,750,000] comprising KYNU, ARHGAP15 and GTDCI
(Table 1). The authors speculate that those genes could
play a crucial role in the process of tissue regeneration
[19]. While many candidate genes have been studied to
investigate their role in birth defects such as omphalo-
cele and hypospadias/cryptorchidism [23-25], the clin-
ical observations in our patient suggests the assignment
of such malformations to the genes in the region
2q22.2-2q22.3.

Particularly interesting seems to be the function of the
gene KYNU. It has previously been mentioned as pos-
sibly participating in a three-gene interaction influencing
hypospadia, cryptorchidism and/or omphalocele [19].
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Table 2 FISH probes used inside the 2¢g22.1-2q22.3 region to confirm the array data [15,16]
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Locus signals BACs Accession number Start position (bp) End position (bp)
2qg22.1 2X RP11-112 N16 AC010873 137,567,308 137,747,509
2q22.1 del RP11-731 F1 AC069394.6 138,791,256 138,964,607
2q22.1 del RP11-597P14 AC097523 138,954,985 139,129,617
2q22.1 del RP11-231E19 AC092620.2 139,299,060 139,450,096
2qg22.1 del RP11-137 J9 AC092837 139,462,901 139,629,396
2qg22.1 del RP11-432012 AC023468 139,608,867 139,779,582
2q22.1 del RP11-15D9 AC109345 139,736,474 139,903,043
2g22.1 del RP11-164E7 AC108036 141,266,879 141,423,790
2q22.3 2X RP11-6402 AQ237761 AQ237759 145,181,324 145,355,222
2qg23.3 2X RP11-58 K7 AQ201454 AQ201457 153,589,449 153,743,069

However, a polymorphism in KYNU has also been linked
to essential hypertension in a group of Han Chinese
[26]. This feature has been investigated by studies that
show the influence of KYNU as a candidate for hyper-
tension in spontaneously hypertensive rats [27,28].
KYNU encodes kynureninase, a vitamin B6-dependent
enzyme involved in the kynurenine pathway for the bio-
synthesis of NAD cofactors from tryptophan, and its de-
ficiency has been associated with abnormal tryptophan
metabolism (MIM:605197) [22]. A massive urinary ex-
cretion of xanturenic acid known as hydroxykynureni-
nuria or xanturenic aciduria (MIM:236800) can be
detected in cases of kynureninase deficiency, due to
defects in the kynurenine pathway [22,29]. Based on the
literature, an investigation was done to detect the pres-
ence of xanthurenic acid in our patient’s urine to exam-
ine the function of this gene. This biochemical study
showed a normal level of xanthurenic acid, indicating
that the tryptophan pathway is not affected and with a
likely normal gene function. This result is in accordance

with the low rank of 91.4% in the Decipher database, in-
dicating that this gene is more likely to not exhibit hap-
loinsufficiency [17]. Finally, genes and/or susceptibility
loci on the long arm of chromosome 2 have been re-
cently linked to blood pressure and hypertension by
genome-wide association studies, such as STK39 at
2q24.3 [30]; PMS1 and MSTN, both at 2q32.2 [31];
DS2S2382 and DS25338 at 2q35-q37 [32].

Within the region 2q22.1-2q22.3, no functions have
yet been assigned to SPOPL, NXPH2 or LOC647012.
HNMT is the only gene currently associated with human
disease (Asthma) [9]. Our patient, however, has not
shown any episodes of asthma. Special attention should
be given to LRP1B, which is a newly identified member
of the LDL receptor family. It was originally described as
a putative tumor suppressor in lung cancer cells, but its
expression profile in several regions of the adult human
brain such as cortex, hippocampus and cerebellum sug-
gests it may have additional functions in the central ner-
vous system [33-35]. Its interaction with the p-amyloid

on the derivative chromosome 2, indicating deletions in 2g22.1.

Figure 2 Three pairs of chromosome 2 are shown to illustrate the FISH results obtained with the BAC probes. a) RP11-587 K7 in 2g23.3
(green) and RP11-112 N16 in 2g22.1 (red) were located outside the deleted region. b) RP11-6402 in 2g22.3 (green) is located outside the
deleted region, while RP11-731 F1 in 2g22.1 (red) is within the affected region. ¢) RP11-137 J9 (green) and RP11-164E7 (red) both are missing
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Table 3 Present case and four patients listed at Decipher with similar deletions, ranging from 2¢g22.1 to 2¢g22.3, are

shown
Patient Cytogenetic sex Interval start-end Interval RefSeq Gene Phenotype
deletion (bp, hg19) (Mb)
This 2922.1922.3 Male 138,750,000— 6 HNMT, SPOPL, NXPH2, Omphalocele, cryptorchidism,
report 144,750,000 LOC647012, LRP1B, KYNU, hypospadia. ID/MR, deep-set eyes,
ARHGAP15, GTDC1 strabismus, thick eyebrow,
protruding tongue, small teeth,
pointed chin, bulbous nose,
wide spaced nipples, hypoplastic
nipples, bilateral clinodactyly of
fifth finger, non-specific
dermatoglyphic patterns, scoliosis,
global developmental delay and
behavioral disorder. Autism
spectrum disorder.
1607 2022.1922.3 Female 139,813,180- 525 HNMT, SPOPL, NXPH2, LRP1B, ID/MR, strabismus, bulbous nasal
145,063,389 KYNU, ARHGAP15, GTDC1 tip, hypoplastic/inverted/absent
nipples.
2566 2022.2922.3 Female 143,635,233~ 4,30 LRP1B, KYNU, ARHGAP15, ID/MR, strabismus, thick
147,935,002 GTDC1 eyebrows.
250662 292219223 Male 141,232,786— 6,70 HNMT, SPOPL, NXPH2, LRPIB, -
147,935,002 KYNU, ARHGAP15, GTDC1
251811 2022.2922.3 Female 143,715,235- 2,65 LRP1B, KYNU, ARHGAP15, -
146,369,069 GTDC1

LEGEND: important data from five individuals with overlapping intervals are shown. The RefSeq genes and the phenotype columns list only the genes and the
clinical findings shared with our patient. Full information of gene contents and phenotype from the Decipher patients is seen at Decipher website [17].

precursor protein could protect against the pathogenesis
of Alzheimer’s disease [33]. Expression of this gene has
also been reported in the thyroid and salivary gland [34].

LRPIB is a very large human gene (1,9 Mb), located at
2q22.1 close to the fragile site, FRA2K, at 2q22.3 [36].
Many large genes residing within unstable chromosomal
regions are highly evolutionarily conserved, and in gen-
eral are not traditional mutational targets; however, gen-
omic alterations can occur due to fragile site instability
and contribute to diseases, including a variety of cancers
[37]. Furthermore, there are important potential linkages
between such genomic alterations and neurological de-
velopment or neurodegeneration, for e.g. CNTNAP2
(2,3 Mb) localized within FRA7I at 7q35 found disrupted
in a family with Gilles de la Tourette syndrome [38], and
PARK2 (1.3 Mb) mutated in autosomal recessive juvenile
Parkinson disease and located in the active center of
FRAGE at 6q26 [39].

Fragile sites are understood to be specific loci that pre-
ferentially exhibit gaps and breaks in metaphase chro-
mosomes following partial inhibition of DNA synthesis,
and their break-prone areas are almost equally distribu-
ted along chromosomes [36,40]. Human chromosome 2
has the highest number of fragile sites, with twenty one
break-prone regions spaced at an average distance of
11.52 Mb [36]. The deletion studied in this report is
placed at 2q22.1q22.3, overlapping FRA2K (2q22.3) and
preceeded by FRA2F at 2q21.3. This is in line with the
fact that regions of chromosomal instability at or near

fragile sites are hot-spots for deletions and other altera-
tions [41].

The fragile site neighboring 2q22.1q22.3 may have
facilitated the chromosomal aberration in our patient in-
cluding the entire LRPIB gene region. Moreover, a hap-
loinsufficiency rank of 13.8% was recently established for
this gene, just above the 0—10% range indicating a high
likelihood of exhibiting haploinsufficiency [17]. If LRPIB
is haploinsufficient in our patient, and considering its
biological function within the central nervous system, it
is tempting to speculate on the participation of this gene
in the patients observed cognitive impairment. In
addition, the presence of SNP variant rs2890652
(142,676,401) in LRPIB has been associated with BMI by
genome wide association analysis [42]. While it is clear
that correlation with potentially functional variants does
not prove that these variants are causal, they can provide
initial clues into which genes might be prioritized in fur-
ther studies [42]. Consequently, LRPIB should be the
subject of further studies to assign its relationship with
BMI The clinical management for hypertension and
BMI in our patient at the age of 17 years included the
use of an angiotensin-converting enzyme inhibitor and a
vigilant diet.

Conclusion

Here we describe a patient presenting severe ID/MR,
autism spectrum disorder, dysmorphism and congenital
malformations, with episodes of high blood pressure
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associated with high levels of BMI. A whole-genome
aCGH screening revealed an approximate 6 Mb de novo
deletion, and a review of the literature provides indica-
tions of a new contiguous gene syndrome located in
2q22.1 to 2q22.3.

Methods
Peripheral blood chromosome analysis at the 550 G-
band level was performed applying standard cytogenetic
procedures. Molecular testing for FMRI and FMR2
genes was performed [43,44]; and the subtelomeric
ToTel Vysion panel of probes (Abbott—Vysis) was also
done. DNA from the patient was isolated from lympho-
cytes according to standard protocols and was subjected
to aCGH analysis [Human Whole-Genome CGH; Nim-
bleGen Systems, Madison, WI] to evaluate the presence
of pathogenic copy number changes. The platform con-
tained 385.000 oligonucleotides at a median spacing of
6 kb. The data was analyzed with the NimbleGen Signal-
Map v.1.9 software. Fluorescence in situ hybridization
(FISH) using standard protocols with the following BAC
clones as probes were used to confirm the deletion:
RP11-112 N16, RP11-731 F1, RP11-597P14, RP11-
231E19, RP11-137 ]9, RP11-432012, RP11-15D9, RP11-
164E7, RP11-6402, RP11-58 K7 (Table 2) [15,16].

Urinary organic acids were analyzed to evaluate the
metabolic pathway of tryptophan once the KYNU gene
was found to be deleted inside the 2q22 region
(Table 1). This biochemical analysis was performed by
high-resolution gas chromatography coupled to mass
spectrometry (Agilent 5975 C, HP-5).

The family consented to participate in the study,
which was approved by the Brazilian Ethical Committee
Board.

Consent

Written informed consent was obtained from the par-
ents of the patient for publication of this case report and
any accompanying images. A copy of the written consent
is available for review by the Editor-in-Chief of this
journal.
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