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Prolonged exposure to acid and bile induces
chromosome abnormalities that precede
malignant transformation of benign
Barrett’s epithelium
Manisha Bajpai1, Hana Aviv2 and Kiron M Das1*
Abstract: Barrett’s esophagus (BE) is an asymptomatic, pre-malignant condition of the esophagus that can progress
to esophageal adenocarcinoma (EAC). BE arises typically in individuals with long-standing gastroesophageal reflux
disease (GERD). The neoplastic progression of BE has been extensively studied histologically and defined as a
metaplasia- dyplasia- carcinoma sequence. However the genetic basis of this process is poorly understood. It is
conceived that preclinical models of BE may facilitate discovery of molecular markers due to ease of longitudinal
sampling. Clinical markers to stratify the patients at higher risk are vital to institute appropriate therapeutic
intervention since EAC has very poor prognosis. We developed a dynamic in-vitro BE carcinogenesis (BEC) model
by exposing naïve Barrett’s epithelium cell line (BAR-T) to acid and bile at pH4 (B4), 5min/day for a year. The BEC
model acquired malignant characteristics after chronic repeated exposure to B4 similar to the sequential
progression of BE to EAC in vivo.

Aim: To study cytogenetic changes during progressive transformation in the BEC model.

Results: We observed that the BAR-T cells progressively acquired several chromosomal abnormalities in the BEC
model. Evidence of chromosomal loss (-Y) rearrangements [t(10;16) and dup (11q)] and clonal selection appeared
during the early stages of the BEC model. Clonal selection resulted in a stabilized monoclonal population of cells
that had a changed morphology and formed colony in soft agar. BAR-T cells grown in parallel without any
exposure did not show any of these abnormalities.

Conclusions: Prolonged acid and bile exposure induced chromosomal aberrations and clonal selection in benign
BAR-T cells. Since aneuploidy preceded morphological/dysplastic changes in the BEC model, chromosomal
aberrations may be an early predictor of BE progression. The [t(10;16) and dup(11q)] aberrations identified in this
study harbor several genes associated with cancer and may be responsible for neoplastic behavior of cells. After
further validation, in-vivo, they may be clinically useful for diagnosis of BE, progressing to dysplasia/esophageal
adenocarcinoma.
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Background
Barrett’s esophagus (BE) is a specialized columnar intes-
tinal metaplasia containing goblet cells that replaces the
native esophageal squamous mucosa in individuals with
long-standing gastroesophageal reflux disease (GERD).
BE is a pre-malignant condition of the esophagus that
can progress to esophageal adenocarcinoma (EAC) with
poor prognosis [1]. Patients with histological BE are 30–
125 times more susceptible to developing EAC com-
pared to those without BE. The neoplastic progression
of BE has been extensively studied and defined as a
metaplasia- dysplasia- carcinoma sequence. However the
genetic basis of BE pathogenesis is poorly understood.
Progressive genetic instability and clonal selection has

been proposed as possible basis of neoplastic evolution
in BE [2]. Alterations in TP53 and P16 genes, aneuploidy
and loss of heterozygosity (LOH) have been identified as
characteristic early events of clonal evolution in the mo-
lecular pathogenesis of BE [2-7]. Only 0.5-1% of BE
patients progress to EAC annually [8], hence large
cohorts have to be followed over several years to obtain
statistically relevant data [2,9]. Therefore a preclinical
model of BE would facilitate longitudinal sampling to
follow development and progression of neoplasia from
non neoplastic epithelium [10].
Rodent and canine BE models utilized surgical anasto-

mosis to induce chronic reflux of gastric acid and/or
duodenal contents, including bile into the esophagus, to
induce metaplasia and dysplasia and EAC [11,12]. Sev-
eral ex-vivo and cell line models of BE enabled under-
standing of the possible contributory role of acid and
bile to the molecular mechanism(s) of BE pathogenesis
[13-17].
The dynamic in-vitro model of BEC is developed from

exposing naïve benign BAR-T cells to acid (pH4) and
bile glycochenodeoxycolic acid (GCDA) for 5 mins a
day, for about year [14]. Induction of double strand
DNA breaks after acute acid and bile acids exposure
have been strongly suggested in BAR-T cells [11,12].
BAR-T cells are hTERT immortalized Barrett’s epithe-
lium cell line [13]. BAR-T cells in the BE Carcinogenesis
(BEC) model acquired malignant characteristics in a
sequential progression and changed from benign to
neoplastic epithelium. Although the BAR-T cells spon-
taneously lost CDKN2A during the initial passages yet
the cell cycle checkpoints were intact [13] during the
initiation of the BEC model. We observed loss of TP53
gene expression after 45 weeks of exposure of acid and
bile [14] in the BEC model accompanied by changes in
cell morphology, loss of contact inhibition (foci forma-
tion), loss of adherence dependence (colony formation
in soft agar) and finally tumor formation in nude mice
[14]. To our knowledge this is the only sequential dy-
namic in-vitro model that shows BE progression to
neoplasia a direct consequence of acid and bile expos-
ure, the noxious components of gastroesophageal reflux-
ate contributing to clinical pathogenesis of BE.
Based on comprehensive cytogenetic analysis of 150

cell lines and tumor cells both in vitro and in vivo a new
concept on the pathways of karyotypic evolution of cells
in culture was put forward by Mamaeva in 1998 [15].
The report unveiled that cells in culture qualitatively dis-
play karyotypic variability corresponding to two distinct
stages- establishment stage, and stabilization stage in the
evolution of the cell line. During the establishment stage
massive changes in the numerical and structural re-
arrangement of chromosomes occur resulting in hetero-
geneity of clones. Duration of this stage is ruled by the
time necessary for selection of dominant and stable
clones. A stabilized cell line has minimal karyotype het-
erogeneity and a clearly defined modal class of chromo-
some numbers [15].
Our study demonstrates for the first time divergence

of “karyotype evolution” in BAR-T cell line due to selec-
tion pressure in the presence of prolonged intermittent
acid and bile exposure. The karyotype evolution may be
a result of genetic instability and heterogeneity [15,16]
yet acid and bile treatment appears to facilitate selection
of cell clones most adapted for existence in-vitro in ad-
verse environment. This novel report also demonstrates
chromosomal loss and rearrangements (duplication and
translocation) as a direct consequence of chronic acid
and bile exposure. It is clearly evident that the BAR-T
cells in an environment (acid and bile, pH4, B4) condu-
cive of disease progression undergo clonal divergence
resulting from chromosomal aberrations. Eventually,
clonal selection leads to monoclonal cell population with
aneuploid karyotypes that have changed morphology,
form soft agar colonies and tumor in nude mice. How-
ever, in the absence of environmental factors the karyo-
type evolution in untreated BAR-T leads to stabilized
polyploid clones that retain Y-chromosome and do not
form tumor or colonies on soft agar.

Results
BAR-T cells accumulate multiple chromosomal aberrations
upon prolonged intermittent B4 exposure
The BEC model was initiated with naïve BAR-T cells
that had the karyotype 46,XY,i(8)(q10) [13]. After 18 wks
of chronic intermittent (5min/day) B4 exposure, BAR-T
cells displayed 5 clonal variants based on different karyo-
types: 46,XY,add (7) (p22), i(8) (q10)/47,XY, add (7)
(p22), i(8) (q10),+20/46,X,-Y, add (7) (p22), i(8) (q10),
+20/47,XY, i(8) (q10), t(10;16) (q24;q24), add (22) (p11),
+20/45,X,-Y, add (7) (p22), i(8) (q10), t(10;16) (q24;q24),
dup(11) (q13q25) (Figure 1 and Table 1). The 18 wks
BAR-T cells growing in parallel without any acid or bile
exposure did not display these characteristics (Figure 1).
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Figure 1 Karyotype analyses of BAR-T cells exposed to acid and bile for different time points.
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Later, at 27 weeks of the BEC model the B4 exposed
BAR-T cells displayed monoclonal karyotype. This karyo-
type 47,X,-Y,i(8)(q10),t(10;16)(q24;q24),dup(11)(q13q25), +19,
+20 was different from the naïve cells and resembled a
combination of variant clones observed at 18 wks of the
BEC model.
The BAR-T cells in the BEC model acquired several

chromosomal abnormalities like- loss of Y chromosome,
a translocation between the long arms of chromosomes
10 and 16 [t(10;16)(q24;q24)], duplication of the long
arm of chromosome 11, dup(11) (q13q25) and trisomies
19 and 20 (Table 1) but maintained the isochromosome
8q of the naïve cells. This karyotype signature appeared
Table 1 Changes in cytogenetic profile of BAR-T cell line due

Chr # (−Y) add(7p) i(

BAR-T A+B 18 wks 46,47 (+) 2/14 (+) 12/14

BAR-T A+B 27 wks 47 (+)

BAR-T A+B 48 wks 47 (+)

BAR-T A+B 65 wks 47 (+)

BAR-T A+B 78 wks 47 (+)
to be stable since it was maintained in all subsequent
time points examined in the BEC model up to 78wks.
Since the untreated cells growing in parallel did not dis-
play these abnormalities, the chromosomal changes
observed in BEC cells appear to be a consequence of
prolonged acid and bile induced DNA damage.

The transformed BAR-T cells in the BEC model are
monoclonal
About 11% of 78 wks B4 treated BAR-T cells formed col-
onies in soft agar (i.e. 110 out of the 1000 cells plated
per well). Each colony growing in soft agar may be rep-
resentative of an independently transformed clone. To
to chronic intermittent acid and bile (pH4) exposure

8)(q10) t(10;16) dup(11q) (+19) (+20)

(+) (+) 2/14 (+) 1/14 (+) 7/14

(+) (+) (+) (+) (+)

(+) (+) (+) (+) (+)

(+) (+) (+) (+) (+)

(+) (+) (+) (+) (+)
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examine this hypothesis, nine random distinctly sepa-
rated colonies were successfully picked from 78 weeks
B4 treated BAR-T cells growing in soft agar plate. All of
these 9 colonies (clones #1- 9) were stabilized and sub-
jected to cytogenetic analysis. Each of the 9 colonies not
exhibited striking similarity in karyotype very similar to
the parent 78wks B4 cells (Table 2). Additionally, these
clones had an added characteristic, they had trisomy 7
not found in parent 78wks B4 cells: 48,X,-Y,+7,i(8)(q10),t
(10;16)(q24;q24),dup(11)(q13q25),+19,+20 (Table 2). It
may be possible that trisomy 7 was essential for soft agar
colony formation.

The BAR-T cell line spontaneously develops polyploidy
after prolonged culture
BAR-T cells grown in parallel as untreated controls dis-
played karyotype similar to the naïve cells. However a
mixture of 46(2n) and 92(4n) chromosomes bearing
clones with add (7p) and add (20q) chromosome seg-
ments not found in naïve cells (Table 3 and Figure 1)
appeared at 27 weeks. Much later (at 76wks) all cells are
uniformly 4n with 92 chromosomes. It is notable that
even at 76 wks these control BAR-T cells retain the Y-
chromosome, which is lost in the BEC model as early as
18 weeks of A+B exposure. The add (7p) and add (20q)
chromosome segments and development of polyploidy
do not transform the cells since they are unable to form
colonies in soft agar and may therefore be considered
non-neoplastic.

Test for authenticity of BAR-T cell line during
development of the BEC model
STR (short tandem repeat) analysis was performed to
rule out possible cross contamination between cell lines.
We performed this analysis on naïve and 78 weeks B4
exposed BAR-T cells. All the 10 identifiers used for STR
analysis were common for both groups of cells. This
confirmed that cells in the BEC model were authentic
and derived from the parent BAR-T cell line. It may be
Table 2 Cytogenetic profile of cell lines derived from colonies

Chr # (−Y) (+7) i(8)(

BAR-T A+B 78 wks 47 (+) (+

Colony 1 cell line 48 (+) (+) (+

Colony 2 cell line 48 (+) (+) (+

Colony 3 cell line 48 (+) (+) (+

Colony 4 cell line 48 (+) (+) (+

Colony 5 cell line 48 (+) (+) (+

Colony 6 cell line 48 (+) (+) (+

Colony 7 cell line 48 (+) (+) (+

Colony 8 cell line 48 (+) (+) (+

Colony 9 cell line 48 (+) (+) (+
worth mention that the BAR-T cell line was derived
from a male patient and had both X and Y chromosome
in the naïve cells as well as the untreated BAR-T cells.
Therefore it is notable that Amelogenin Y was not
detected in the transformed (78wks, B4) BAR-T cells.
This further confirmed the loss of Y chromosome during
transformation in these cells (Table 4).
Discussion
Chronic exposure of cells to oxidative stress results in
increased genomic instability [17,18] characterized by
numerical (aneuploidy or polyploidy) or structural
chromosomal alterations (such as breaks, fusion, trans-
location, deletion, duplication etc.). Several hypotheses
support contribution of chromosomal aberrations to-
ward the development of malignancies [19]. The com-
bination of genetic instability and clonal expansion have
been implicated in progression of BE to EAC [9].
The BEC model displays development of genomic in-

stability and clonal selection/expansion during karyotype
evolution that is characteristically different from the un-
treated BAR-T cell line growing in parallel. It may be
mentioned that the BEC model also displays morpho-
logical and neoplastic changes not observed in the
paired untreated cells [14].
Most established tumor cell lines exhibit karyotype

evolution during long term culture [15,16]. The initial
establishment stage of these cell lines is marked by
karyotypic heterogeneity caused by genomic instability.
Clones most adapted to growth conditions are selected
as the cell line reaches stabilization stage with minimum
karyotype heterogeneity [15]. We could not find any
mention of karyotypic evolution in cell lines after hTERT
immortalisation in literature. Therefore, the changes, as
observed in the untreated hTERT immortalized benign
BAR-T cells during prolonged continued in-vitro culture,
is a unique observation. More intriguing is the finding is
that “physiological” agents such as acid and bile
on soft agar arising from78 wks A+B treated, BAR-T cells

q10) t(10;16) dup(11q) (+19) (+20)

) (+) (+) (+) (+)

) (+) (+) (+) (+)

) (+) (+) (+) (+)

) (+) (+) (+) (+)

) (+) (+) (+) (+)

) (+) (+) (+) (+)

) (+) (+) (+) (+)

) (+) (+) (+) (+)

) (+) (+) (+) (+)

) (+) (+) (+) (+)



Table 3 Cytogenetic profile of untreated BAR-T cells during prolonged culture

Chr# -Y add(7p) i(8)(q10) t(10;16) dup(11q) +19 +20 add(20q)

BAR-T 0 wks 46 +

BAR-T 27 wks 46 + + +

92 + + +

BAR-T 76 wks 91 + + +
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modulate karyotype evolution by influencing clonal vari-
ation and clonal selection in the BEC model.
The loss of chromosome Y observed in the BEC model

is common in several types of human cancers including
prostate carcinoma, renal cell carcinoma, acute promye-
locytic leukemia, and head and neck squamous carcin-
oma [20-22]. Most cells derived from biopsy specimens
of BE patients exhibit loss of the Y chromosome [23].
This chromosomal and phenotypic abnormalities have
been suggested to be characteristic of the metaplasia-
dysplasia-carcinoma sequence of BE pathogenesis [24].
Trisomy 7 has been reported in a wide variety of

tumors of mainly epithelial origin, but also in some mes-
enchymal and neurogenic neoplasms [25]. It was also
detected in the non-neoplastic regions in the vicinity of
these tumors [26]. Trisomy 7 with concurrent increased
expression of epidermal growth factor receptor (EGFR)
gene located on this chromosome and increased EGF
binding was observed in biopsies of Barrett’s epithelium
[27]. Elevated levels of the EGFR has been identified as a
common component of multiple cancer types and ap-
pear to promote solid tumor growth [28]. Therefore Tri-
somy 7, which was observed in the cell lines derived
from soft agar colonies possibly, exacerbates their
tumorogenic potential since only 11% of 78 wks cells of
the BEC model expressed this abnormality.
Amplification of the chromosome llq13 region are fre-

quently found in carcinomas of the breast and of the
head and neck region. In these carcinomas, amplification
of the 11q13 region might serve as a prognostic marker
Table 4 STR (number of repeats at each locus) profile of
BAR-T cell line

Markers 78wks(A+B) naive BAR-T

D5S818 16 16

D21S11 24 24

D16S539 9, 12 9, 12

D5S818 7 7

CSF1PO 14 14

D8S1179 13 13

D5S818 16 16

D21S11 24 24

FGA 21, 24 21, 24

AMELOGENIN X X, Y
that identifies a subgroup of patients at increased risk.
INT2-FGFR3, HSR1-FGF4 and CCND1 (Cyclin D1), a
gene that regulates the G1/S transition of the cell cycle
are some of the syntenic genes co-amplified in the
11q13 region [29]. The amplification is usually low (3 to
10 copies), and physically linked to chromosome 11.
Squamous cell carcinomas of the esophagus with
chromosome 11q13 amplification indicated simultan-
eous CCND1 gene amplification [30]. Amplification of
the region 11q23 simultaneously with the proto-oncogene
MLL (myeloid/lymphoid leukemia) is a characteristic de-
velopment in acute myeloid leukemia [31]. Thus the du-
plication of the long arm of chromosome 11 found in
our cell line may represent a low level of amplification
of these and several other tumor promoting genes
located on the chromosome 11 (complete list can be
viewed at http://www.ornl.gov/sci/techresources/Human_
Genome/posters/chromosome/chromo11.shtml). Duplica-
tion of a region on the long arm of chromosome 11 may
be the first step in the transformation process.
DNA content increased (4n) by clearly delineated gen-

ome doubling in the untreated BAR-T cells. This may be
endopolyploidy that arises from variations of the canon-
ical G1–S–G2–M cell cycle that replicate the genome
without cell division [32]. Endoreplication is common in
cancer cells and is considered as a precursor to aneu-
ploidy that leads to oncogenesis [33]. Polyploidy, (4n
population) has been correlated with premalignant epi-
thelium in EAC as a predictor of progression [7,34-36].
Limited studies suggest that genome instability increases
with age in mammals [37-39]. Therefore, it is possible
that 4n BAR-T cells display a typical ageing phenomenon
[40]. It is unknown if development of polyploidy is com-
mon in hTERT immortalized cell lines after prolonged
culture (1yr) and provides any survival advantage to the
cells. Lack of cancer-specific gene alterations or lack of
proper selection pressure may explain why tumorigen-
icity was not achieved in the untreated BAR-T cells [14].
This study reinforces the clinical fact that karyotype

changes are detectable before the appearance of dyspla-
sia (changes in cell morphology) in BE [9]. Several
acquired genetic abnormalities, such as gene mutation,
gene deletion, loss of heterozygosity, aberrant methyla-
tion, aberrant gene expression, and chromosomal aber-
rations, have been proposed as markers for diagnosis of
BE progression [24,36,41-44]. However, translocation

http://www.ornl.gov/sci/techresources/Human_Genome/posters/chromosome/chromo11.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/posters/chromosome/chromo11.shtml
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between long arms of chromosome 10 and 16, t(10;16)
(q24;q24) is a novel finding from this study. Genes
located on the long arm of chromosomes 10 and 16 are
involved in myriad of cancer conditions are summarized
in Table 5 (source: http://atlasgeneticsoncology.org/). It
is possible that some of these genes may have been dis-
rupted as a consequence of unknown breakpoints caus-
ing (t10;16) and giving an evolutionary advantage to the
cells. It however remains to be established if this is a
unique event in the transformed BAR-T cells or a fre-
quent early event in the progression of BE to adenocar-
cinoma using patients’ BE tissue.
Conclusions
We observed that prolonged acid and bile exposure
induced chromosomal aberrations and clonal selection
in benign Barrett’s epithelial cells (BAR-T) and lead to
development of neoplasia in the BEC model. Absence of
proper selection pressure may explain why the untreated
cells growing in parallel showed distinctly different
karyotype evolution and remained benign. Chromosomal
changes in the BEC preceded morphological/dysplastic
changes reported earlier [14]. Therefore chromosomal
aberrations may be early predictors of BE progression.
Most of chromosomal aberrations identified in this study
Table 5 Genes implicated in causing cancer located on the ch
summarized from source: http://atlasgeneticsoncology.org/)

Gene name Location Cancer

BTRC (beta-transducin repeat containing) 10 q24 Several m
and gast
melanom
breast ca

LOXL4 (lysyl oxidase-like 4) LOXL4 m
but not
[53]. LOX
tumors a
whereas

NFkappa B2 nuclear factor of kappa light
polypeptide gene enhancer in B-cells 2 (p49/
p100)

rearrang
lymphom

PAX2 (Paired box gene 2) It has be
of severi

PDCD4 (Programmed Cell Death 4) Expressio
prostate
decrease
adenoca

CBFA2T3 (core-binding factor, runt domain, alpha
subunit 2 translocated to 3)

Chromosome
16 q24

Loss of n
breast ca
breast an

CDT1 (chromatin licensing and DNA replication
factor 1)

CDT1 is a
LNcap, M

FBXO31 (F-box protein 31) Tumor s
breast ex
line. This
heterozy
are associated with cancer and may be responsible for
neoplastic progression in BEC model. Yet two unique
events observed in the BEC model: dup11q and t(10;16)
deserve further validation, in-vivo. They may be clinic-
ally useful for diagnosis of BE, progressing to dysplasia/
esophageal adenocarcinoma.

Methods
Cell culture
The BAR-T cell line was treated with acid and bile,
glycochenodeoxycholic acid at pH4(B4) for 5 minutes
everyday for more than 65 weeks to develop the BEC
model. Untreated cells grown in parallel served as con-
trols. Cells were collected and frozen in liquid nitrogen
every 8–10 weeks from both treated and untreated
groups for karyotyping. Nine independent colonies
derived from 78 weeks B4 treated BAR-T cells were
picked from soft agar and cultured independently into
24 well plates. Each of these 9 clones was expanded and
frozen.

Cytogenetic analysis
Cytogenetic analyses were performed with cells at differ-
ent time points starting with naïve cells up to 78 weeks
of B4 treated cells at about 10 weeks intervals (Figure 1).
romosome fragments 10q24 and 16q24 (reviewed and

connection

utations of the gene have been reported in prostrate [45], breast [46]
ric cancers [47]. Overexpression of the protein was detected in
as [48], hepatoblastomas [49] and colorectal [50], pancreatic [51] and
rcinomas [52].

RNA was expressed in MDA-MB-231 highly invasive breast cancer cells,
in poorly invasive and non-metastatic breast cancer cells MCF7 and T47D
L4 was over-expressed in most invasive HNSSC primary or metastatic
nd cell lines, primary tumors of oral cavity as well as thyroid gland
no expression was detected in normal epithelial cells [54].

ement of NFkappa b2 gene locus has been found in many forms of
as [55].

en proposed as a useful marker of prostate cancer as well as predictor
ty of kidney cancers [56]

n attenuated with progression in human tumors of the lung, colon,
and breast; diagnostic and prognostic for colon cancer staging with
d expression in adenomas and a further decrease in stage 1
rcinomas.

ormal function of CBFA2T3 may be a key event in the early stage of
ncer [57]. LOH on the whole 16q22-qter region is frequently detected in
d prostate cancer [58].

potential oncogene, highly expressed in cancer cell lines CaSki, HeLa,
CF7, MDAMB231, and Saos.

uppressor down-regulated in breast cancer cell lines relative to normal
pression and cause G1 phase cell cycle arrest of the MDA-MB-468 cell
region is frequently deleted in several human cancers causing loss of
gosity [59].

http://atlasgeneticsoncology.org/
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BAR-T cells at metaphase, PD~150, are obtained by col-
cemid arrest and hypotonic treatment with pre-warmed
0.075M KCI, fixed and washed in freshly made Carnoy’s
(3:1 absolute methanol: glacial acetic acid), dropped onto
precleaned microscope slides and air dried. Trypsin G-
banding is performed following a modification of Seab-
right’s method [60]. Cytogenetic analysis was also per-
formed on each of the 9 colonies that developed in soft
agar derived from 78 weeks B4 treated BAR-T cells. Cells
from 78 weeks B4 treated cells and parallel untreated
BAR-T cells from different times were also analyzed.

STR analysis
BAR-T cells from early passage and 78 weeks after B4
treatment were used for small tandem repeat (STR) ana-
lysis to rule out contamination of the cell line during
prolonged cell culture. Genomic DNA was extracted by
the phenol-chloroform-isoamyl alcohol method and 0.5
ng was used for amplification following the AmpFlSTRW

Profiler™ PCR Amplification kit instructions. Amplified
samples were analyzed by injecting into a capillary on
the ABI PRISMW 310 Genetic Analyzer. GeneScanW soft-
ware automatically analyzed the collected data, which
was then imported into GenotyperW software for auto-
matic genotyping of alleles.
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